\r\n" );
document.write( "Use the rational roots theorem to solve:\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "The last term is -6, which in absolute value is 6, and which\r\n" );
document.write( "has these factors 1,2,3,6\r\n" );
document.write( "\r\n" );
document.write( "The leading term (the term with largest exponent) is
, has\r\n" );
document.write( "coefficient 1, which in absolute value is 1, and which\r\n" );
document.write( "has only the one factor 1.\r\n" );
document.write( "\r\n" );
document.write( "Now we form all the fractions with numerator 1,2,3,or 6 and\r\n" );
document.write( "denominator 1\r\n" );
document.write( "\r\n" );
document.write( "These are
,
,
,
or\r\n" );
document.write( "\r\n" );
document.write( "
,
,
,
.\r\n" );
document.write( "\r\n" );
document.write( "Their negatives are also possible rational roots, so all the\r\n" );
document.write( "possible rational roots are:\r\n" );
document.write( "\r\n" );
document.write( " ±
, ±
, ±
, ±
\r\n" );
document.write( "\r\n" );
document.write( "We start out by trying
using synthetic division to\r\n" );
document.write( "see if we get a 0 remainder:\r\n" );
document.write( "\r\n" );
document.write( " 1| 1 -5 5 5 -6\r\n" );
document.write( " | 1 -4 1 6\r\n" );
document.write( " 1 -4 1 6 0\r\n" );
document.write( "\r\n" );
document.write( "Yes we do get 0 remainder, so we know that we have factored\r\n" );
document.write( "the polynomial\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( " as\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "So now we can just find the roots of the simpler polynomial:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "The first and last numbers happen to be the same as they were\r\n" );
document.write( "in the original, so we can try the same ones again. We try 1\r\n" );
document.write( "again:\r\n" );
document.write( "\r\n" );
document.write( " 1| 1 -4 1 6\r\n" );
document.write( " | 1 -3 -2\r\n" );
document.write( " 1 -3 -2 4 \r\n" );
document.write( "\r\n" );
document.write( "No that leaves a remainder of 4, not 0.\r\n" );
document.write( "\r\n" );
document.write( "So we try -1\r\n" );
document.write( "\r\n" );
document.write( " -1| 1 -4 1 6\r\n" );
document.write( " | -1 6 -6\r\n" );
document.write( " 1 -5 6 0\r\n" );
document.write( "\r\n" );
document.write( "Yes we do get 0 remainder, so we know that we have factored\r\n" );
document.write( "the polynomial again.\r\n" );
document.write( "\r\n" );
document.write( "First we factored\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( " as\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Now we have factored the polynomial in the \r\n" );
document.write( "second parentheses, and we have:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "So now we can just find the roots of the simpler polynomial:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "But we don't need to do synthetic division again, for\r\n" );
document.write( "
factors as
\r\n" );
document.write( "\r\n" );
document.write( "So now we have factored
completely:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Set each factor equal to 0 and so the roots are \r\n" );
document.write( "\r\n" );
document.write( "
,
,
,
\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( "