document.write( "Question 150023: ) Consider the polynomial f(x) = x3 + 6x2 – 25x + 18.\r
\n" ); document.write( "\n" ); document.write( "Find all of the zeros of the given polynomial. Be sure to show work.\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #110112 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "First, let's list all of the possible rational zeros.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Any rational zero can be found through this equation\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " where p and q are the factors of the last and first coefficients\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So let's list the factors of 18 (the last coefficient):\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's list the factors of 1 (the first coefficient):\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's divide each factor of the last coefficient by each factor of the first coefficient\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now simplify\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These are all the distinct rational zeros of the function that could occur\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's see if the possible zero \"1\" is really a root for the function \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So let's make the synthetic division table for the function \"x%5E3%2B6x%5E2-25x%2B18\" given the possible zero \"1\":\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
1|16-2518
| 17-18
17-180
\r
\n" ); document.write( "\n" ); document.write( "Since the remainder \"0\" (the right most entry in the last row) is equal to zero, this means that \"1\" is a zero of \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's see if the possible zero \"2\" is really a root for the function \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So let's make the synthetic division table for the function \"x%5E3%2B6x%5E2-25x%2B18\" given the possible zero \"2\":\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
2|16-2518
| 216-18
18-90
\r
\n" ); document.write( "\n" ); document.write( "Since the remainder \"0\" (the right most entry in the last row) is equal to zero, this means that \"2\" is a zero of \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's see if the possible zero \"3\" is really a root for the function \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So let's make the synthetic division table for the function \"x%5E3%2B6x%5E2-25x%2B18\" given the possible zero \"3\":\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
3|16-2518
| 3276
19224
\r
\n" ); document.write( "\n" ); document.write( "Since the remainder \"24\" (the right most entry in the last row) is not equal to zero, this means that \"3\" is not a zero of \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's see if the possible zero \"6\" is really a root for the function \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So let's make the synthetic division table for the function \"x%5E3%2B6x%5E2-25x%2B18\" given the possible zero \"6\":\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
6|16-2518
| 672282
11247300
\r
\n" ); document.write( "\n" ); document.write( "Since the remainder \"300\" (the right most entry in the last row) is not equal to zero, this means that \"6\" is not a zero of \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's see if the possible zero \"9\" is really a root for the function \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So let's make the synthetic division table for the function \"x%5E3%2B6x%5E2-25x%2B18\" given the possible zero \"9\":\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
9|16-2518
| 9135990
1151101008
\r
\n" ); document.write( "\n" ); document.write( "Since the remainder \"1008\" (the right most entry in the last row) is not equal to zero, this means that \"9\" is not a zero of \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's see if the possible zero \"18\" is really a root for the function \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So let's make the synthetic division table for the function \"x%5E3%2B6x%5E2-25x%2B18\" given the possible zero \"18\":\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
18|16-2518
| 184327326
1244077344
\r
\n" ); document.write( "\n" ); document.write( "Since the remainder \"7344\" (the right most entry in the last row) is not equal to zero, this means that \"18\" is not a zero of \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's see if the possible zero \"-1\" is really a root for the function \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So let's make the synthetic division table for the function \"x%5E3%2B6x%5E2-25x%2B18\" given the possible zero \"-1\":\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
-1|16-2518
| -1-530
15-3048
\r
\n" ); document.write( "\n" ); document.write( "Since the remainder \"48\" (the right most entry in the last row) is not equal to zero, this means that \"-1\" is not a zero of \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's see if the possible zero \"-2\" is really a root for the function \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So let's make the synthetic division table for the function \"x%5E3%2B6x%5E2-25x%2B18\" given the possible zero \"-2\":\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
-2|16-2518
| -2-866
14-3384
\r
\n" ); document.write( "\n" ); document.write( "Since the remainder \"84\" (the right most entry in the last row) is not equal to zero, this means that \"-2\" is not a zero of \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's see if the possible zero \"-3\" is really a root for the function \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So let's make the synthetic division table for the function \"x%5E3%2B6x%5E2-25x%2B18\" given the possible zero \"-3\":\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
-3|16-2518
| -3-9102
13-34120
\r
\n" ); document.write( "\n" ); document.write( "Since the remainder \"120\" (the right most entry in the last row) is not equal to zero, this means that \"-3\" is not a zero of \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's see if the possible zero \"-6\" is really a root for the function \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So let's make the synthetic division table for the function \"x%5E3%2B6x%5E2-25x%2B18\" given the possible zero \"-6\":\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
-6|16-2518
| -60150
10-25168
\r
\n" ); document.write( "\n" ); document.write( "Since the remainder \"168\" (the right most entry in the last row) is not equal to zero, this means that \"-6\" is not a zero of \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's see if the possible zero \"-9\" is really a root for the function \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So let's make the synthetic division table for the function \"x%5E3%2B6x%5E2-25x%2B18\" given the possible zero \"-9\":\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
-9|16-2518
| -927-18
1-320
\r
\n" ); document.write( "\n" ); document.write( "Since the remainder \"0\" (the right most entry in the last row) is equal to zero, this means that \"-9\" is a zero of \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's see if the possible zero \"-18\" is really a root for the function \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So let's make the synthetic division table for the function \"x%5E3%2B6x%5E2-25x%2B18\" given the possible zero \"-18\":\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
-18|16-2518
| -18216-3438
1-12191-3420
\r
\n" ); document.write( "\n" ); document.write( "Since the remainder \"-3420\" (the right most entry in the last row) is not equal to zero, this means that \"-18\" is not a zero of \"x%5E3%2B6x%5E2-25x%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "==================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Summary:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the rational zeros of \"x%5E3%2B6x%5E2-25x%2B18\" are \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=-9\", \"x=1\", or \"x=2\" \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );