document.write( "Question 149544: Steve traveled 200 miles at a certain speed. Had he gone 10mph faster, the trip would have taken 1 hour less. Find the speed of his vehicle. \n" ); document.write( "
Algebra.Com's Answer #109714 by mangopeeler07(462)![]() ![]() ![]() You can put this solution on YOUR website! 200 miles \n" ); document.write( "x speed \n" ); document.write( "y time\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "200/x=y\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "200/(x+10)=y-1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Plug in y in the second equation \n" ); document.write( "200/(x+10)=200/x-1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Common denominator on the right side x \n" ); document.write( "200/(x+10)=200/x-x/x\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Subtract the numerators \n" ); document.write( "200/(x+10)=(200-x)/x\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Cross multiply \n" ); document.write( "200x=-x^2+190x+2000\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Subtract 200x from both sides \n" ); document.write( "0=-x^2-10x+2000\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Take out negative one \n" ); document.write( "0=-1(x^2+10x-2000)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Factor \n" ); document.write( "0=-1(x+50)(x-40)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Set each equal to zero and solve \n" ); document.write( "(x+50)=0 \n" ); document.write( "x=-50\r \n" ); document.write( "\n" ); document.write( "(x-40)=0 \n" ); document.write( "x=40\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Speed can't be negative, so x=40.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Original speed: 40 mph \n" ); document.write( " |