document.write( "Question 149248: (x-8/x+5)/(x-9/x+4) why cant -5, 9, and -4 not allowable replacements for the variable x. \r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #109499 by nerdybill(7384) You can put this solution on YOUR website! If a denominator is zero, the term is \"undefined\". \n" ); document.write( ". \n" ); document.write( "(x-8/x+5)/(x-9/x+4) \n" ); document.write( ". \n" ); document.write( "if x=-5, we would have: \n" ); document.write( "(x-8/x+5)/(x-9/x+4) \n" ); document.write( "(x-8/0+5)/(x-9/x+4) \n" ); document.write( "(x-8/0)/(x-9/x+4) \n" ); document.write( "Notice the numerator (x-8)/0 -- this is undefined \n" ); document.write( ". \n" ); document.write( "if x=9, we would have: \n" ); document.write( "(x-8/x+5)/(x-9/x+4) \n" ); document.write( "(x-8/x+5)/(0-9/x+4) \n" ); document.write( "(x-8/x+5)/(0/x+4) \n" ); document.write( "(x-8/x+5)/(0) \n" ); document.write( "Again we have a denominator equal to zero -- undefined \n" ); document.write( ". \n" ); document.write( "if x = -4, we would have: \n" ); document.write( "(x-8/x+5)/(x-9/x+4) \n" ); document.write( "(x-8/x+5)/(x-9/-4+4) \n" ); document.write( "(x-8/x+5)/(x-9/0) \n" ); document.write( "Notice the denominator (x-9)/0 -- this is undefined \n" ); document.write( " \n" ); document.write( " |