document.write( "Question 148904: a two digit number is 5 times the sum of its digit. when 9 is added to the number the result is the original number with its reversed. find the original number \n" ); document.write( "
Algebra.Com's Answer #109221 by oscargut(2103)![]() ![]() You can put this solution on YOUR website! Let a and b the digits we can write the number as \"ab\" but the number is 10*a+b \n" ); document.write( "(for example if a=3 and b=2 the number would be 32 and 32 =10*3+2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "a two digit number is 5 times the sum of its digit then 10*a+b=5(a+b) \n" ); document.write( "when 9 is added to the number the result is the original number with its reversed 10*a+b+9=10*b+a\r \n" ); document.write( "\n" ); document.write( "then we have the following equations:\r \n" ); document.write( "\n" ); document.write( "10*a+b=5(a+b) \n" ); document.write( "10*a+b+9=10*b+a\r \n" ); document.write( "\n" ); document.write( "then\r \n" ); document.write( "\n" ); document.write( "10a+b=5a+5b \n" ); document.write( "10a+b+9=10b+a\r \n" ); document.write( "\n" ); document.write( "then\r \n" ); document.write( "\n" ); document.write( "5a-4b=0 \n" ); document.write( "9a-9b=-9\r \n" ); document.write( "\n" ); document.write( "then\r \n" ); document.write( "\n" ); document.write( "5a-4b=0 \n" ); document.write( "a-b=-1\r \n" ); document.write( "\n" ); document.write( "then using 2nd eq a=b-1\r \n" ); document.write( "\n" ); document.write( "using 1st eq 5(b-1)-4b=0\r \n" ); document.write( "\n" ); document.write( "then 5b-5-4b=0 \n" ); document.write( "then b=5 and a=5-1=4\r \n" ); document.write( "\n" ); document.write( "so the original number is 45\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |