document.write( "Question 148860: 1)5x^2-10x Factor\r
\n" ); document.write( "\n" ); document.write( "5x(x-5) Is this correct?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2)6x^2y^2+12xy^2+12y^2 Factor\r
\n" ); document.write( "\n" ); document.write( "6y^2(x^2+2x+2) Is this correct?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "3)3a^3b-3ab^3 Factor
\n" ); document.write( "3ab(a^2-b^2) Is this correct?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "4) a^2+2a-24 Factor\r
\n" ); document.write( "\n" ); document.write( "Is this factored already?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "5) 4b^2-28b+49\r
\n" ); document.write( "\n" ); document.write( "I need help on this one.....\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "6)3m^3+27m Factor
\n" ); document.write( "3m(m^2+9) Is this correct?
\n" ); document.write( "

Algebra.Com's Answer #109199 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "1)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5x%5E2-10x\" Start with the given expression\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5x%28x-2%29\" Factor out the GCF \"5x\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2) \r
\n" ); document.write( "\n" ); document.write( "Correct. You can check the answer by distributing\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "3) \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Good so far, but can factor \"a%5E2-b%5E2\" into \"%28a%2Bb%29%28a-b%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"3a%5E3b-3ab%5E3\" completely factors to \"3ab%28a%2Bb%29%28a-b%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "4)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"a%5E2%2B2a-24\", we can see that the first coefficient is \"1\", the second coefficient is \"2\", and the last term is \"-24\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"-24\" to get \"%281%29%28-24%29=-24\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-24\" (the previous product) and add to the second coefficient \"2\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-24\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-24\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,8,12,24\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-8,-12,-24\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-24\". For instance, \"1%2A24=-24\", \"2%2A12=-24\", etc.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since \"-24\" is negative, this means that one factor is positive and one is negative.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"2\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-241+(-24)=-23
2-122+(-12)=-10
3-83+(-8)=-5
4-64+(-6)=-2
-124-1+24=23
-212-2+12=10
-38-3+8=5
-46-4+6=2
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-4\" and \"6\" add to \"2\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-4\" and \"6\" both multiply to \"-24\" and add to \"2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"2a\" with \"-4a%2B6a\". Remember, \"-4\" and \"6\" add to \"2\". So this shows us that \"-4a%2B6a=2a\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"a%5E2%2Bhighlight%28-4a%2B6a%29-24\" Replace the second term \"2a\" with \"-4a%2B6a\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28a%5E2-4a%29%2B%286a-24%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"a%28a-4%29%2B%286a-24%29\" Factor out the GCF \"a\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"a%28a-4%29%2B6%28a-4%29\" Factor out \"6\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28a%2B6%29%28a-4%29\" Combine like terms. Or factor out the common term \"a-4\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"a%5E2%2B2a-24\" factors to \"%28a%2B6%29%28a-4%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by FOILing \"%28a%2B6%29%28a-4%29\" to get \"a%5E2%2B2a-24\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "5)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"4b%5E2-28b%2B49\", we can see that the first coefficient is \"4\", the second coefficient is \"-28\", and the last term is \"49\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"4\" by the last term \"49\" to get \"%284%29%2849%29=196\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"196\" (the previous product) and add to the second coefficient \"-28\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"196\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"196\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4,7,14,28,49,98,196\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-7,-14,-28,-49,-98,-196\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"196\". For instance, \"1%2A196=196\", \"2%2A98=196\", etc.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since \"196\" is positive, this means that either\r
\n" ); document.write( "\n" ); document.write( "a) both factors are positive, or...
\n" ); document.write( "b) both factors are negative.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-28\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
11961+196=197
2982+98=100
4494+49=53
7287+28=35
141414+14=28
-1-196-1+(-196)=-197
-2-98-2+(-98)=-100
-4-49-4+(-49)=-53
-7-28-7+(-28)=-35
-14-14-14+(-14)=-28
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-14\" and \"-14\" add to \"-28\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-14\" and \"-14\" both multiply to \"196\" and add to \"-28\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-28b\" with \"-14b-14b\". Remember, \"-14\" and \"-14\" add to \"-28\". So this shows us that \"-14b-14b=-28b\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4b%5E2%2Bhighlight%28-14b-14b%29%2B49\" Replace the second term \"-28b\" with \"-14b-14b\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284b%5E2-14b%29%2B%28-14b%2B49%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2b%282b-7%29%2B%28-14b%2B49%29\" Factor out the GCF \"2b\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2b%282b-7%29-7%282b-7%29\" Factor out \"7\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282b-7%29%282b-7%29\" Combine like terms. Or factor out the common term \"2b-7\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282b-7%29%5E2\" Collect and condense the terms.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"4b%5E2-28b%2B49\" factors to \"%282b-7%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by FOILing \"%282b-7%29%5E2\" to get \"4b%5E2-28b%2B49\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "6) Correct. You can check the answer by distributing
\n" ); document.write( "
\n" ); document.write( "
\n" );