document.write( "Question 148772: 6x2 - 28x + 16 (Factor Competely) \n" ); document.write( "
Algebra.Com's Answer #109113 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "\"6x%5E2-28x%2B16\" Start with the given expression\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2%283x%5E2-14x%2B8%29\" Factor out the GCF \"2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's focus on the inner expression \"3x%5E2-14x%2B8\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"3x%5E2-14x%2B8\", we can see that the first coefficient is \"3\", the second coefficient is \"-14\", and the last term is \"8\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"3\" by the last term \"8\" to get \"%283%29%288%29=24\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"24\" (the previous product) and add to the second coefficient \"-14\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"24\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"24\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,8,12,24\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-8,-12,-24\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"24\". For instance, \"1%2A24=24\", \"2%2A12=24\", etc.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since \"24\" is positive, this means that either\r
\n" ); document.write( "\n" ); document.write( "a) both factors are positive, or...
\n" ); document.write( "b) both factors are negative.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-14\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1241+24=25
2122+12=14
383+8=11
464+6=10
-1-24-1+(-24)=-25
-2-12-2+(-12)=-14
-3-8-3+(-8)=-11
-4-6-4+(-6)=-10
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-2\" and \"-12\" add to \"-14\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-2\" and \"-12\" both multiply to \"24\" and add to \"-14\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-14x\" with \"-2x-12x\". Remember, \"-2\" and \"-12\" add to \"-14\". So this shows us that \"-2x-12x=-14x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%5E2%2Bhighlight%28-2x-12x%29%2B8\" Replace the second term \"-14x\" with \"-2x-12x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283x%5E2-2x%29%2B%28-12x%2B8%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%283x-2%29%2B%28-12x%2B8%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%283x-2%29-4%283x-2%29\" Factor out \"4\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x-4%29%283x-2%29\" Combine like terms. Or factor out the common term \"3x-2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"3x%5E2-14x%2B8\" factors to \"%28x-4%29%283x-2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So this means that \"2%283x%5E2-14x%2B8%29\" can be rewritten as \"2%28x-4%29%283x-2%29\" \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"6x%5E2-28x%2B16\" factors to \"2%28x-4%29%283x-2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"2%28x-4%29%283x-2%29\" to get \"6x%5E2-28x%2B16\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );