document.write( "Question 148757This question is from textbook
\n" ); document.write( ": How do I factor this trinomoial:\r
\n" ); document.write( "\n" ); document.write( "5x^2+16x+3
\n" ); document.write( "

Algebra.Com's Answer #109093 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"5x%5E2%2B16x%2B3\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"5x%5E2%2B16x%2B3\", we can see that the first coefficient is \"5\", the second coefficient is \"16\", and the last term is \"3\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"5\" by the last term \"3\" to get \"%285%29%283%29=15\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"15\" (the previous product) and add to the second coefficient \"16\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"15\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"15\":\r
\n" ); document.write( "\n" ); document.write( "1,3,5,15\r
\n" ); document.write( "\n" ); document.write( "-1,-3,-5,-15\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"15\". For instance, \"1%2A15=15\", \"3%2A5=15\", etc.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since \"15\" is positive, this means that either\r
\n" ); document.write( "\n" ); document.write( "a) both factors are positive, or...
\n" ); document.write( "b) both factors are negative.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"16\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1151+15=16
353+5=8
-1-15-1+(-15)=-16
-3-5-3+(-5)=-8
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"1\" and \"15\" add to \"16\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"1\" and \"15\" both multiply to \"15\" and add to \"16\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"16x\" with \"x%2B15x\". Remember, \"1\" and \"15\" add to \"16\". So this shows us that \"x%2B15x=16x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5x%5E2%2Bhighlight%28x%2B15x%29%2B3\" Replace the second term \"16x\" with \"x%2B15x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%285x%5E2%2Bx%29%2B%2815x%2B3%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%285x%2B1%29%2B%2815x%2B3%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%285x%2B1%29%2B3%285x%2B1%29\" Factor out \"3\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B3%29%285x%2B1%29\" Combine like terms. Or factor out the common term \"5x%2B1\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"5x%5E2%2B16x%2B3\" factors to \"%28x%2B3%29%285x%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by FOILing \"%28x%2B3%29%285x%2B1%29\" to get \"5x%5E2%2B16x%2B3\" or by graphing the original expression and the answer.
\n" ); document.write( "
\n" ); document.write( "
\n" );