document.write( "Question 22371: Solve log(2x+3) = log(4x) + 2 for x. \n" ); document.write( "
Algebra.Com's Answer #10854 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
Subtract \"log(4x)\" from each side to get
\n" ); document.write( "log(2x+3)-log(4x)=2
\n" ); document.write( "Apply the Quotient law of logarithms to get
\n" ); document.write( "log[(2x+3)/4x]=2
\n" ); document.write( "The corresponding exponental equation is
\n" ); document.write( "[(2x+3)/4x]=10^2 = 100
\n" ); document.write( "Multiply both sides by 4x to get the following
\n" ); document.write( " 2x+3=400x
\n" ); document.write( " 398x=3
\n" ); document.write( " x= 3/398\r
\n" ); document.write( "\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );