document.write( "Question 148095This question is from textbook
\n" ); document.write( ": i need step by step solution using elimination method\r
\n" ); document.write( "\n" ); document.write( "x-2y-8
\n" ); document.write( "x+2y-0
\n" ); document.write( "

Algebra.Com's Answer #108489 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
I'm assuming that the system is: \"system%28x-2y=8%2Cx%2B2y=0%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Start with the given system of equations:\r
\n" ); document.write( "\n" ); document.write( "\"system%28x-2y=8%2Cx%2B2y=0%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Add the equations together. You can do this by simply adding the two left sides and the two right sides separately like this:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x-2y%29%2B%28x%2B2y%29=%288%29%2B%280%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2Bx%29%2B%28-2y%2B2y%29=8%2B0\" Group like terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%2B0y=8\" Combine like terms. Notice how the y terms cancel out.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x=8\" Simplify.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=%288%29%2F%282%29\" Divide both sides by \"2\" to isolate \"x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=4\" Reduce.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x-2y=8\" Now go back to the first equation.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4-2y=8\" Plug in \"x=4\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4-2y=8\" Multiply.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-2y=8-4\" Subtract \"4\" from both sides.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-2y=4\" Combine like terms on the right side.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=%284%29%2F%28-2%29\" Divide both sides by \"-2\" to isolate \"y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=-2\" Reduce.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So our answer is \"x=4\" and \"y=-2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Which form the ordered pair .\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This means that the system is consistent and independent.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Notice when we graph the equations, we see that they intersect at . So this visually verifies our answer.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Graph of \"x-2y=8\" (red) and \"x%2B2y=0\" (green)
\n" ); document.write( "
\n" ); document.write( "
\n" );