document.write( "Question 148004: Find 3 consecutive intergers such that the sum of their squares is 77. \n" ); document.write( "
| Algebra.Com's Answer #108392 by ankor@dixie-net.com(22740)     You can put this solution on YOUR website! Find 3 consecutive integers such that the sum of their squares is 77. \n" ); document.write( ": \n" ); document.write( "x^2 + (x+1)^2 + (x+2)^2 = 77 \n" ); document.write( "FOIL \n" ); document.write( "x^2 + (x^2 + 2x + 1) + (x^2+4x+4) = 77 \n" ); document.write( ": \n" ); document.write( "x^2 + x^2 + x^2 + 2x + 4x + 1 + 4 = 77 \n" ); document.write( ": \n" ); document.write( "3x^2 + 6x + 5 = 77 \n" ); document.write( ": \n" ); document.write( "3x^2 + 6x + 5 - 77 = 0 \n" ); document.write( ": \n" ); document.write( "3x^2 + 6x - 72 = 0 \n" ); document.write( "Simplify /3 \n" ); document.write( "x^2 + 2x - 24 = 0 \n" ); document.write( "Factor \n" ); document.write( "(x+6)(x-4) = 0 \n" ); document.write( "Two solutions: \n" ); document.write( "x=-6; you can consider this as a solution (they did not specify positive) \n" ); document.write( "-6^2 + -5^2 + -4^2 = + 77 \n" ); document.write( "and \n" ); document.write( "x=+4, (16 + 25 + 36 = 77) \n" ); document.write( " |