document.write( "Question 147265: Write each fraction/expression in simplest form:\r
\n" ); document.write( "\n" ); document.write( "A: [18x^4(y^3)]/[24x^2(y^3)]\r
\n" ); document.write( "\n" ); document.write( "B: (4r^2-25s^2)/(2r^2+3rs-20s^2)
\n" ); document.write( "

Algebra.Com's Answer #107670 by nerdybill(7384)\"\" \"About 
You can put this solution on YOUR website!
A: [18x^4(y^3)]/[24x^2(y^3)]
\n" ); document.write( "Looking at the 18/24, it can be reduced to 3/4:
\n" ); document.write( "[3x^4(y^3)]/[4x^2(y^3)]
\n" ); document.write( "expand the x's:
\n" ); document.write( "[3xxxx(y^3)]/[4xx(y^3)]
\n" ); document.write( "each x on the denominator can be canceled with one on the top:
\n" ); document.write( "[3xx(y^3)]/[4(y^3)]
\n" ); document.write( "[3x^2(y^3)]/[4(y^3)]
\n" ); document.write( "expand y's:
\n" ); document.write( "[3x^2(yyy)]/[4(yyy)]
\n" ); document.write( "all the y's can be canceled:
\n" ); document.write( "[3x^2]/[4]
\n" ); document.write( ".\r
\n" ); document.write( "\n" ); document.write( "B: (4r^2-25s^2)/(2r^2+3rs-20s^2)
\n" ); document.write( "Check whether you have a typo, should it be:
\n" ); document.write( "(4r^2-25s^2)/(2r^2+2rs-20s^2)
\n" ); document.write( "factoring the numerator:
\n" ); document.write( "[(2r+5s)(2r-5s)]/(2r^2+2rs-20s^2)
\n" ); document.write( "factoring the denominator:
\n" ); document.write( "[(2r+5s)(2r-5s)]/[(2r-4s)(2r+5s)]
\n" ); document.write( "the 2r+5s cancel, leaving:
\n" ); document.write( "(2r-5s)/(2r-4s)\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );