document.write( "Question 22137: log2x+log2(x-6)=4 \n" ); document.write( "
Algebra.Com's Answer #10693 by longjonsilver(2297)\"\" \"About 
You can put this solution on YOUR website!
i assume the 2 is the base of the log. You should explain. I shall leave the 2 out, for ease of writing...\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "log(x)+log(x-6)=4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To remove log-base 2, we need to raise the left and right hand terms to power 2. We can only do that easily when we have 1 term on both sides, so first we re-write the equation as:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "log((x)(x-6))=4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "And now we raise to power 2, giving\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%29%28x-6%29=4%5E2\"
\n" ); document.write( "\"x%5E2-6x=16\"
\n" ); document.write( "\"x%5E2-6x-16+=+0\"
\n" ); document.write( "(x-8)(x+2) = 0\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "so either x=8 or x=-2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "jon.
\n" ); document.write( "
\n" ); document.write( "
\n" );