document.write( "Question 146081: Name the complex conjugate, then find product of the complex number with its conjugate.
\n" ); document.write( " 3-i\r
\n" ); document.write( "\n" ); document.write( "answers:\r
\n" ); document.write( "\n" ); document.write( "A) -3+i;10
\n" ); document.write( "B) 3+i;8
\n" ); document.write( "C) 3+i;10
\n" ); document.write( "D) -3+i;8
\n" ); document.write( "

Algebra.Com's Answer #106621 by Earlsdon(6294)\"\" \"About 
You can put this solution on YOUR website!
The complex conjugate of a complex number, (a+bi) is just (a-bi), so for:
\n" ); document.write( "\"%283-i%29\" the complex conjugate is (3+i) and the product of these two can be found using the FOIL method:
\n" ); document.write( "\"%283-i%29%283%2Bi%29+=+9%2B3i-3i-i%5E2\" Simplify the product:
\n" ); document.write( "\"9-i%5E2\" Substitute \"i%5E2+=+-1\"
\n" ); document.write( "\"9-%28-1%29+=+9%2B1\" = \"10\"
\n" ); document.write( "Answer C: (3+i), 10
\n" ); document.write( "
\n" );