document.write( "Question 145754: how do I solve: y^4-3y^3-2y^2+10y-12=0, given root 1+i \n" ); document.write( "
Algebra.Com's Answer #106368 by nabla(475)![]() ![]() ![]() You can put this solution on YOUR website! I am going to switch notation from y to x. \n" ); document.write( "Since 1+i is a zero, 1-i will be as well. \n" ); document.write( "Thus we have:\r \n" ); document.write( "\n" ); document.write( "(x-(1+i))(x-(1-i))(ax^2+bx+c)=0 \n" ); document.write( "c - c i^2 + b x - 2 c x - b i^2 x + a x^2 - 2 b x^2 + c x^2 - \n" ); document.write( " a i^2 x^2 - 2 a x^3 + b x^3 + a x^4=0\r \n" ); document.write( "\n" ); document.write( "Now, the coefficients of the original 4th degree polynomial are 1, -3, -2, 10,-12.\r \n" ); document.write( "\n" ); document.write( "SO, \n" ); document.write( "2c=-12 implies c=-6. \n" ); document.write( "2b-2c=10 implies b=-1 \n" ); document.write( "2a-2b+c=-2 implies a=1. \r \n" ); document.write( "\n" ); document.write( "This gives (x-(1+i))(x-(1-i))(x^2-x-6)=0. \n" ); document.write( "We can solve for the other two zeroes by factoring.\r \n" ); document.write( "\n" ); document.write( "(x-3)(x+2)=0 \n" ); document.write( "gives x=3 or x=-2\r \n" ); document.write( "\n" ); document.write( "So, x=3,x=-2,x=1 +i, x=1 -i are the roots.\r \n" ); document.write( "\n" ); document.write( "We can see this in the graph (only the real roots of 3 and -2 will show)...\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "As with my last answer, you can E-mail me if you would like the problem done in a different way. \n" ); document.write( " |