document.write( "Question 145754: how do I solve: y^4-3y^3-2y^2+10y-12=0, given root 1+i \n" ); document.write( "
Algebra.Com's Answer #106368 by nabla(475)\"\" \"About 
You can put this solution on YOUR website!
I am going to switch notation from y to x.
\n" ); document.write( "Since 1+i is a zero, 1-i will be as well.
\n" ); document.write( "Thus we have:\r
\n" ); document.write( "\n" ); document.write( "(x-(1+i))(x-(1-i))(ax^2+bx+c)=0
\n" ); document.write( "c - c i^2 + b x - 2 c x - b i^2 x + a x^2 - 2 b x^2 + c x^2 -
\n" ); document.write( " a i^2 x^2 - 2 a x^3 + b x^3 + a x^4=0\r
\n" ); document.write( "\n" ); document.write( "Now, the coefficients of the original 4th degree polynomial are 1, -3, -2, 10,-12.\r
\n" ); document.write( "\n" ); document.write( "SO,
\n" ); document.write( "2c=-12 implies c=-6.
\n" ); document.write( "2b-2c=10 implies b=-1
\n" ); document.write( "2a-2b+c=-2 implies a=1. \r
\n" ); document.write( "\n" ); document.write( "This gives (x-(1+i))(x-(1-i))(x^2-x-6)=0.
\n" ); document.write( "We can solve for the other two zeroes by factoring.\r
\n" ); document.write( "\n" ); document.write( "(x-3)(x+2)=0
\n" ); document.write( "gives x=3 or x=-2\r
\n" ); document.write( "\n" ); document.write( "So, x=3,x=-2,x=1 +i, x=1 -i are the roots.\r
\n" ); document.write( "\n" ); document.write( "We can see this in the graph (only the real roots of 3 and -2 will show)...\r
\n" ); document.write( "\n" ); document.write( "\"graph%28+300%2C+200%2C+-5%2C+5%2C+-5%2C+5%2C+x%5E4-3x%5E3-2x%5E2%2B10x-12%29\"\r
\n" ); document.write( "\n" ); document.write( "As with my last answer, you can E-mail me if you would like the problem done in a different way.
\n" ); document.write( "
\n" );