document.write( "Question 145018: express each equation in slope-intercept form. then determin, without silving the system, whether the system of equations has exactly one solution, none, or an infinite number
\n" ); document.write( " 4x+6y=26
\n" ); document.write( " -6x-9y=-39
\n" ); document.write( "

Algebra.Com's Answer #105724 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"4x%2B6y=26\" Start with the first equation\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6y=26-4x\" Subtract \"4+x\" from both sides\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6y=-4x%2B26\" Rearrange the equation\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=%28-4x%2B26%29%2F%286%29\" Divide both sides by \"6\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=%28-4%2F6%29x%2B%2826%29%2F%286%29\" Break up the fraction\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=%28-2%2F3%29x%2B13%2F3\" Reduce\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the equation is now in slope-intercept form (\"y=mx%2Bb\") where the slope is \"m=-2%2F3\" and the y-intercept is \"b=13%2F3\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "----------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-6x-9y=-39\" Move onto the second equation\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-9y=-39%2B6x\" Add \"6+x\" to both sides\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-9y=%2B6x-39\" Rearrange the equation\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=%28%2B6x-39%29%2F%28-9%29\" Divide both sides by \"-9\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=%28%2B6%2F-9%29x%2B%28-39%29%2F%28-9%29\" Break up the fraction\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=%28-2%2F3%29x%2B13%2F3\" Reduce\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the equation is now in slope-intercept form (\"y=mx%2Bb\") where the slope is \"m=-2%2F3\" and the y-intercept is \"b=13%2F3\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since the slope and y-intercept for both equations are the same, this means that there are an infinite number of solutions (since one equation lies on top of the other)
\n" ); document.write( "
\n" );