document.write( "Question 144165This question is from textbook Geometry; for enjoyment and challenge
\n" ); document.write( ": hey! so i dont even really know how to start this, if somebody could help that would be sooooooooooooo great!!!!\r
\n" ); document.write( "\n" ); document.write( "The problem says: Describe the locus of points a fixed distance from a given point and equidistant from the sides of an angle. \r
\n" ); document.write( "\n" ); document.write( "Thank you times a million!!!!
\n" ); document.write( "

Algebra.Com's Answer #104941 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
Draw the figure.
\n" ); document.write( "-----------------------
\n" ); document.write( "points at a fixed distance from a point form a circle
\n" ); document.write( "--------
\n" ); document.write( "points equidistant from the sides of an angle form the bisector of the angle
\n" ); document.write( "--------------------
\n" ); document.write( "the locus you are looking for could be one of the following:
\n" ); document.write( "1) no points if the radius of the circle is less than the perpendicular
\n" ); document.write( "distance from the point to the bisector.
\n" ); document.write( "---------
\n" ); document.write( "2) one point if the radius of the circle equals the distance from the
\n" ); document.write( "point to the bisector
\n" ); document.write( "-------------------------
\n" ); document.write( "3) two points if the radius is greater than the perpendicular distance.
\n" ); document.write( "===========================
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "
\n" ); document.write( "
\n" );