document.write( "Question 140974: Find x^2 + y^2 if x and y are positive integers such that:\r
\n" ); document.write( "\n" ); document.write( "xy + x + y = 71
\n" ); document.write( "x^2y + xy^2 = 880
\n" ); document.write( "

Algebra.Com's Answer #102906 by oscargut(2103)\"\" \"About 
You can put this solution on YOUR website!
xy + x + y = 71
\n" ); document.write( "x^2y + xy^2 = 880\r
\n" ); document.write( "\n" ); document.write( "using 2nd eq then xy(x+y)=880
\n" ); document.write( "then using 1st eq xy(71-xy)=880\r
\n" ); document.write( "\n" ); document.write( "let w=xy then -w^2+71w-880=0\r
\n" ); document.write( "\n" ); document.write( "xy=16 or xy=55
\n" ); document.write( "and
\n" ); document.write( "x+y=55 or x+y=16\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "case 1)xy=16 and x+y=55 (is not possible) because x and y positive integers
\n" ); document.write( "case 2)xy=55 and x+y=16 (x=11,y=5 or x=5,y=11)
\n" ); document.write( "x^2+y^2= (x+y)^2-2xy = 16^2-2(55)=146\r
\n" ); document.write( "\n" ); document.write( "Answer: x^2+y^2=146\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );