document.write( "Question 140333: Please help!
\n" );
document.write( "In the following regression, X = weekly pay, Y = income tax withheld, and n = 35 McDonald’s employees. (a) Write the fitted regression equation. (b) State the degrees of freedom for a two-tailed test for zero slope, and use Appendix D to find the critical value at α = .05. (c) What is your conclusion about the slope? (d) Interpret the 95 percent confidence limits for the slope. (e) Verify that F = t2 for the slope. (f) In your own words, describe the fit of this regression.\r
\n" );
document.write( "\n" );
document.write( "Regression output confidence interval
\n" );
document.write( "variables coefficients std. error t (df = 33) p-value 95% lower 95% upper
\n" );
document.write( "Intercept 30.7963 6.4078 4.806 .0000 17.7595 43.8331
\n" );
document.write( "Slope 0.0343 0.0119 2.889 .0068 0.0101 0.0584
\n" );
document.write( "ANOVA table
\n" );
document.write( "Source SS df MS F p-value
\n" );
document.write( "Regression 387.6959 1 387.6959 8.35 .0068
\n" );
document.write( "Residual 1,533.0614 33 46.4564
\n" );
document.write( "Total 1,920.7573 34\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #102782 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! In the following regression, X = weekly pay, Y = income tax withheld, and n = 35 McDonald’s employees. \n" ); document.write( "(a) Write the fitted regression equation. \n" ); document.write( "y = 30.7963 + 0.0343X \n" ); document.write( "------------------------------------- \n" ); document.write( "(b) State the degrees of freedom for a two-tailed test for zero slope, and use Appendix D to find the critical value at α = .05. \n" ); document.write( "df= 33 ; critical value = 1.692 \n" ); document.write( "---------------------------------- \n" ); document.write( "(c) What is your conclusion about the slope? \n" ); document.write( "Since 2.889 is greater than 1.692, Reject Ho. The slope is not 0. \n" ); document.write( "There is a linear relation between X and Y. \n" ); document.write( "------------------------------------------------ \n" ); document.write( "(d) Interpret the 95 percent confidence limits for the slope. \n" ); document.write( "We can be 95% confidence the slope is between 0.0101 and 0.0584 \n" ); document.write( "--------------------------------------------------- \n" ); document.write( "(e) Verify that F = t2 for the slope. \n" ); document.write( "8.35 = 2.889^2 \n" ); document.write( "(f) In your own words, describe the fit of this regression. \n" ); document.write( "Based on p-values both the intercept and the slope are good. \n" ); document.write( "Income tax withheld increases by 0.0343 for every increase of one \n" ); document.write( "dollar of weekly pay. \n" ); document.write( "------------------------------------------------------------ \n" ); document.write( "Regression output confidence interval \n" ); document.write( "variables coefficients std. error t (df = 33).. p-value.. 95% lower.. 95% upper \n" ); document.write( "Intercept.. 30.7963..... 6.4078... 4.806....... .0000..... 17.7595.... 43.8331 \n" ); document.write( "Slope....... 0.0343..... 0.0119... 2.889....... .0068...... 0.0101..... 0.0584 \n" ); document.write( "---------------------------------- \n" ); document.write( "ANOVA table \n" ); document.write( "Source....... SS... df MS........ F.. p-value \n" ); document.write( "Regression 387.6959. 1. 387.6959 8.35 .0068 \n" ); document.write( "Residual 1,533.0614 33.. 46.4564 \n" ); document.write( "Total... 1,920.7573 34 \r \n" ); document.write( "\n" ); document.write( "-------------------------------------- \n" ); document.write( "Cheers, \n" ); document.write( "Stan H.\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |