document.write( "Question 140653: 12.50\r
\n" );
document.write( "\n" );
document.write( "In the following regression, X = total assets ($ billions), Y = total revenue ($ billions), and n = 64
\n" );
document.write( "large banks. (a) Write the fitted regression equation. (b) State the degrees of freedom for a two tailed
\n" );
document.write( "test for zero slope, and use Appendix D to find the critical value at α = .05. (c) What is your
\n" );
document.write( "conclusion about the slope? (d) Interpret the 95 percent confidence limits for the slope. (e) Verify
\n" );
document.write( "that F = t2 for the slope. (f) In your own words, describe the fit of this regression.
\n" );
document.write( "R2 0.519
\n" );
document.write( "Std. Error 6.977
\n" );
document.write( "n 64
\n" );
document.write( "ANOVA table
\n" );
document.write( "Source SS df MS F p-value
\n" );
document.write( "Regression 3,260.0981 1 3,260.0981 66.97 1.90E-11
\n" );
document.write( "Residual 3,018.3339 62 48.6828
\n" );
document.write( "Total 6,278.4320 63
\n" );
document.write( "Regression output confidence interval
\n" );
document.write( "variables coefficients std. error t (df = 62) p-value 95% lower 95% upper
\n" );
document.write( "Intercept 6.5763 1.9254 3.416 .0011 2.7275 10.4252
\n" );
document.write( "X1 0.0452 0.0055 8.183 1.90E-11 0.0342 0.0563\r
\n" );
document.write( "\n" );
document.write( "14.16\r
\n" );
document.write( "\n" );
document.write( "(a) Plot the data on U.S. general aviation shipments. (b) Describe the pattern and discuss possible
\n" );
document.write( "causes. (c) Would a fitted trend be helpful? Explain. (d) Make a similar graph for 1992–2003 only.
\n" );
document.write( "Would a fitted trend be helpful in making a prediction for 2004? (e) Fit a trend model of your
\n" );
document.write( "choice to the 1992–2003 data. (f) Make a forecast for 2004, using either the fitted trend model or
\n" );
document.write( "a judgment forecast. Why is it best to ignore earlier years in this data set?
\n" );
document.write( "U.S. Manufactured General Aviation Shipments, 1966–2003
\n" );
document.write( "Year Planes Year Planes Year Planes Year Planes
\n" );
document.write( "1966 15,587 1976 15,451 1986 1,495 1996 1,053
\n" );
document.write( "1967 13,484 1977 16,904 1987 1,085 1997 1,482
\n" );
document.write( "1968 13,556 1978 17,811 1988 1,143 1998 2,115
\n" );
document.write( "1969 12,407 1979 17,048 1989 1,535 1999 2,421
\n" );
document.write( "1970 7,277 1980 11,877 1990 1,134 2000 2,714
\n" );
document.write( "1971 7,346 1981 9,457 1991 1,021 2001 2,538
\n" );
document.write( "1972 9,774 1982 4,266 1992 856 2002 2,169
\n" );
document.write( "1973 13,646 1983 2,691 1993 870 2003 2,090
\n" );
document.write( "1974 14,166 1984 2,431 1994 881
\n" );
document.write( "1975 14,056 1985 2,029 1995 1,028\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #102373 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! In the following regression, X = total assets ($ billions), Y = total revenue ($ billions), and n = 64 large banks. \n" ); document.write( "-------------------------------------------- \n" ); document.write( "(a) Write the fitted regression equation. \n" ); document.write( "Y = 6.5763 + 0.0452X \n" ); document.write( "------------------------------- \n" ); document.write( "(b) State the degrees of freedom for a two tailed test for zero slope, and use Appendix D to find the critical value at α = .05. \n" ); document.write( "df=62 ; t = 2.660 \n" ); document.write( "------------------------------ \n" ); document.write( "(c) What is your conclusion about the slope? \n" ); document.write( "Since p-valu = 1.90E-11 the slope is not zero : X is statistically \n" ); document.write( "significant in determining Y \n" ); document.write( "------------------------------ \n" ); document.write( "(d) Interpret the 95 percent confidence limits for the slope. \n" ); document.write( "0.0452 is in the 95% confidence interval \n" ); document.write( "------------------------------------- \n" ); document.write( "(e) Verify that F = t2 for the slope. \n" ); document.write( "66.97 is not equal to 8.183^2 \n" ); document.write( "------------------------------------------ \n" ); document.write( "(f) In your own words, describe the fit of this regression. \n" ); document.write( "Since R2 is 51.9% the reg. eq. explains only that percent \n" ); document.write( "of the variability between Y and X. \n" ); document.write( "----------------------------------------------------------------- \n" ); document.write( "R2 0.519 \n" ); document.write( "Std. Error 6.977 \n" ); document.write( "n 64 \n" ); document.write( "------------------------- \n" ); document.write( "ANOVA table \n" ); document.write( "Source..... SS....... df... MS........ F..... p-value \n" ); document.write( "Regression 3,260.0981 1.. 3,260.0981 66.97... 1.90E-11 \n" ); document.write( "Residual.. 3,018.3339 62... 48.6828 \n" ); document.write( "Total..... 6,278.4320 63 \n" ); document.write( "--------------------------- \n" ); document.write( "Regression output confidence interval \n" ); document.write( "variables coefficients std. error.. t (df = 62). p-value 95% lower 95% upper \n" ); document.write( "Intercept..... 6.5763.. 1.9254......... 3.416.... .0011... 2.7275... 10.4252 \n" ); document.write( "X1............ 0.0452.. 0.0055......... 8.183 ...1.90E-11. 0.0342.... 0.0563 \n" ); document.write( "14.16 \n" ); document.write( "================================================== \n" ); document.write( "Comment: This site is not suitable for graphing displays \n" ); document.write( "so I will leave this question to you. \n" ); document.write( "----------------------------------\r \n" ); document.write( "\n" ); document.write( "(a) Plot the data on U.S. general aviation shipments. \n" ); document.write( "(b) Describe the pattern and discuss possible causes. \n" ); document.write( "(c) Would a fitted trend be helpful? Explain. \n" ); document.write( "(d) Make a similar graph for 1992–2003 only. \n" ); document.write( "Would a fitted trend be helpful in making a prediction for 2004? \n" ); document.write( "(e) Fit a trend model of your choice to the 1992–2003 data. \n" ); document.write( "(f) Make a forecast for 2004, using either the fitted trend model or \n" ); document.write( "a judgment forecast. Why is it best to ignore earlier years in this data set? \n" ); document.write( "---------------------------------------------------------- \n" ); document.write( "U.S. Manufactured General Aviation Shipments, 1966–2003 \n" ); document.write( "Year Planes Year Planes Year Planes Year Planes \n" ); document.write( "1966 15,587 1976 15,451 1986 1,495 1996 1,053 \n" ); document.write( "1967 13,484 1977 16,904 1987 1,085 1997 1,482 \n" ); document.write( "1968 13,556 1978 17,811 1988 1,143 1998 2,115 \n" ); document.write( "1969 12,407 1979 17,048 1989 1,535 1999 2,421 \n" ); document.write( "1970 7,277 1980 11,877 1990 1,134 2000 2,714 \n" ); document.write( "1971 7,346 1981 9,457 1991 1,021 2001 2,538 \n" ); document.write( "1972 9,774 1982 4,266 1992 856 2002 2,169 \n" ); document.write( "1973 13,646 1983 2,691 1993 870 2003 2,090 \n" ); document.write( "1974 14,166 1984 2,431 1994 881 \n" ); document.write( "1975 14,056 1985 2,029 1995 1,028 \r \n" ); document.write( "\n" ); document.write( "================= \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " \n" ); document.write( " |