document.write( "Question 138082This question is from textbook Prentice Hall Algebra 1
\n" );
document.write( ": An airplane flies 738 mi against the wind and 1062 mi with the wind in a total time of 9 hours. The speed of the airplane in still air is 200 mi/h. What is the speed of the wind? \n" );
document.write( "
Algebra.Com's Answer #100875 by checkley77(12844)![]() ![]() ![]() You can put this solution on YOUR website! 738/(200-W)+1062/(200+W)=9 \n" ); document.write( "[738(200+W)+1062(200-W)/(200-W)(200+W)=9 \n" ); document.write( "(147,600+738W+212,400-1062W)/(40,000-W^2)=9 NOW CROSS MULTIPLY \n" ); document.write( "9(40,000-W^2)=738W-1062W+147,600+212,400 \n" ); document.write( "360,000-9W^2=-324W+360,000 \n" ); document.write( "-9W^2+324W+360.000-360,000=0 \n" ); document.write( "9W^2-324W=0 \n" ); document.write( "9W(W-36)=0 \n" ); document.write( "W-26=0 \n" ); document.write( "W=36 ANSWER FOR THE SPEED OF THE WIND. \n" ); document.write( "PROOF \n" ); document.write( "738/(200-36)+1062/(200+36)=9 \n" ); document.write( "738/164+1062/236=9 \n" ); document.write( "4.5+4.5=9 \n" ); document.write( "9=9\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |