document.write( "Question 137090: cirle O centered at the orgin passes through points A(-4,3) and B(3,4). Use algebra to show that the perpendicular bisector of line AB passes through the center of the circle. \n" ); document.write( "
Algebra.Com's Answer #100314 by jedidiah(6)\"\" \"About 
You can put this solution on YOUR website!
y=mx+b
\n" ); document.write( "AB: m= 1/7
\n" ); document.write( "y=(1/7)x + b
\n" ); document.write( "4= 3/7 + b
\n" ); document.write( "b=25/7\r
\n" ); document.write( "\n" ); document.write( "y= (1/7)x + (25/7)\r
\n" ); document.write( "\n" ); document.write( "slope of line perpendicular to AB = -7
\n" ); document.write( "midpoint of AB = (-1/2, 7/2)\r
\n" ); document.write( "\n" ); document.write( "equation of perpendicular bisector:
\n" ); document.write( "y= -7x + b\r
\n" ); document.write( "\n" ); document.write( "7/2 = 7/2 + b
\n" ); document.write( "b=0\r
\n" ); document.write( "\n" ); document.write( "y=-7x\r
\n" ); document.write( "\n" ); document.write( "0=0\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );