SOLUTION: two trains that are 495 mi apart travel towards each other. They pass each other 5 hrs later. If one trains is traveling half as fast as the other, what are their speed? 5x+5y=4

Algebra.Com
Question 231608: two trains that are 495 mi apart travel towards each other. They pass each other 5 hrs later. If one trains is traveling half as fast as the other, what are their speed?
5x+5y=495
x=1/2-y
5(1/2-y)+5y=495
then lost
Thanks
Erika

Answer by rfer(16322)   (Show Source): You can put this solution on YOUR website!
You have a two step problem.
r=D/t
r=495/5
r=99 mph total speed coming together
------------------------------------
2x+x=99
3x=99
x=33 mph
2x=66 mph
Does that help?
Bob

RELATED QUESTIONS

Two trains are 495 miles apart. They travel toward each other. They pass each other 5hr... (answered by amarjeeth123)
Two trains, one traveling twice the speed of the other, start st the same time from... (answered by Boreal,greenestamps)
The speed of one train is 15 km/h greater than that of another train . Both trains leave... (answered by Boreal)
Two trains start from towns 224 mi apart and travel towards each other on parallel... (answered by ikleyn)
Two trains leave towns 915 mi apart at the same time and travel toward each other. One... (answered by stanbon)
Two trains are traveling at 250 miles apart and traveling towards each other . They meet... (answered by lwsshak3)
Two trains heading towards each other are 400 miles apart one train travels 15 miles per... (answered by Stitch)
Two trains leave towns 324 mi apart at the same time and travel toward each other. One... (answered by solver91311)
Two trains leave towns 692 mi apart at the same time and travel toward each other. One... (answered by josmiceli)