SOLUTION: A baseball diamond has the shape of a square with sides 90 ft long. A player 60 ft from second base is running towards the third base at a speed of 28 ft/min. At what rate is the p

Algebra.Com
Question 1193963: A baseball diamond has the shape of a square with sides 90 ft long. A player 60 ft from second base is running towards the third base at a speed of 28 ft/min. At what rate is the player’s distance from the home plate changing?
Answer by ikleyn(52788)   (Show Source): You can put this solution on YOUR website!
.

28 ft/min is not a speed of a running baseball player.

It is a rate of a crawling turtle.



RELATED QUESTIONS

A baseball diamond has the shape of a square with sides 90 ft. long. A player 60 ft from... (answered by math_helper)
A baseball diamond has the shape of a square with side 90 feet long. A player is 30ft... (answered by josgarithmetic)
A baseball diamond is a square with sides of length 90 ft. A batter hits the ball and... (answered by solver91311)
A baseball diamond is a square with sides of length 90 ft. A batter hits the ball and... (answered by math_helper)
The bases in a baseball diamond are 90 ft apart. A player picks up a ground ball 11 ft... (answered by ankor@dixie-net.com)
A baseball diamond is in the shape of a square, 90 feet on a side. what is the direct... (answered by stanbon,ewatrrr)
a major league baseball "diamond" is actually a square, 90 feet on a side. what is the... (answered by richard1234)
A baseball diamond is in the shape of a square, 90 feet on the side. What is the direct... (answered by jim_thompson5910)
A baseball diamond is 90 ft in a side (it’s a square). Matthew runs from the first base (answered by CPhill)