Multiplication of a 3-digit number by a single digit can be performed like these two examples below: 943 458 7 9 21 <--7x3 72 <--9x8 28 <--7x4 45 <--9x5 63 <--7x9 36 <--9x4 6601 4122 So let QxQ=AB and QxP=CD PPQ Q AB <--QxQ CD <--QxP CD <--QxP RQ5Q B must = Q, since we bring it down to the bottom line PPQ Q AQ <--QxQ CD <--QxP CD <--QxP RQ5Q We need Q so that QxQ ends in Q 1x1=1, 2x2=4, 3x3=9, 4x4=16, 5x5=25, 6x6=36, 7x7=49, 8x8=64, 9x9=81 Since QxQ must end in Q, Q is 6, since Q obviously can't be 1. Therefore AQ must be 36. PP6 6 36 <--6x6 CD <--6xP CD <--6xP R656 In order to get the 5 on the bottom line, D must be 2. PP6 6 36 <--6x6 C2 <--6xP C2 <--6xP R656 In order to get the left-most 6 on the bottom line, C must be 4, PP6 6 36 <--6x6 42 <--6xP 42 <--6xP R656 and then P must be 7, since 6x7=42 776 6 36 <--6x6 42 <--6x7 42 <--6x7 R656 Finally R can only be 4 776 6 36 <--6x6 42 <--6x7 42 <--6x7 4656 Edwin