SOLUTION: A solution of 53% alcohol is to be mixed with a solution of 22% alcohol to yield 341 Liters of a 41% solution. How many Liters of 53% solution must be used?

Algebra.Com
Question 955061: A solution of 53% alcohol is to be mixed with a solution of 22% alcohol to yield 341 Liters of a 41% solution. How many Liters of 53% solution must be used?
Answer by josmiceli(19441)   (Show Source): You can put this solution on YOUR website!
Let = liters of 53% alcohol needed
Let = liters of 22% alcohol needed
------------------------------------
(1)
(2)
------------------------------
(2)
(2)
Multiply both sides of (1) by
and subtract (1) from (2)
(2)
(1)
--------------------------


and
(1)
(1)
(1)
----------------
209 liters of 53% alcohol are needed
132 liters of 22% alcohol are needed
---------------------------------
check:
(2)
(2)
(2)
OK

RELATED QUESTIONS

How many liters (L) of a 20% alcohol solution must be mixed with 60 L of a 90% alcohol... (answered by lwsshak3)
How many liters of 35% alcohol and 60% alcohol must be mixed together to make 40 liters... (answered by lwsshak3)
how many liters of 35% alcohol and 60% alcohol must be mixed together to make 40 liters... (answered by stanbon)
how many liters of a 40% alcohol solution must be mixed with 65% solution to obtain 30 L... (answered by josgarithmetic)
how many liters of a 10% alcohol solution must be mixed with 12 L of 5% alcohol solution... (answered by josgarithmetic)
How many liters of an 11% alcohol solution should be mixed with 60 liters of a 5% alcohol (answered by stanbon)
How many liters of a 10% alcohol solution should be mixed with 12 liters of a 20% alcohol (answered by scott8148)
How many liters of a 10% alcohol solution should be mixed with 12 liters of a 20% alcohol (answered by mananth)
How many liters of a 10% alcohol solution should be mixed with 12 liters of a 20% alcohol (answered by Alan3354)