Question 815528: to produce 8 liters of a 90% alcohol solution by mixing together a 75% solution and a 95% solution how many liters of the 75% should be used Found 2 solutions by TimothyLamb, ewatrrr:Answer by TimothyLamb(4379) (Show Source): You can put this solution on YOUR website! w = volume of weak solution
s = volume of strong solution
---
75w + 95s = 8*90
w + s = 8
s = 8 - w
---
75w + 95s = 8*90
75w + 95s = 720
75w + 95(8 - w) = 720
75w + 760 - 95w = 720
20w = 40
---
w = 2 liters
s = 6 liters
---
Solve and graph linear equations:
https://sooeet.com/math/linear-equation-solver.php
---
Solve quadratic equations, quadratic formula:
https://sooeet.com/math/quadratic-formula-solver.php
---
Convert fractions, decimals, and percents:
https://sooeet.com/math/fraction-decimal-percent.php
---
Calculate and graph the linear regression of any data set:
https://sooeet.com/math/linear-regression.php Answer by ewatrrr(24785) (Show Source): You can put this solution on YOUR website!
Hi,
producing 8 liters of a 90% alcohol solution by mixing together a 75% solution and a 95% solution |After multiplying thru by 100
x = solve for x and find (8-x):amount of 75% solution