.
Let x be the volume of the original 25% mixture to add water to it.
Then the amount of the pure antifreeze in it is 0.25*x liters.
The amount of the pure antifreeze in the final 30 liters of the 20% solution (after adding water) is 0.2*30 = 6 liters
and it is with no change:
0.25x = 6 liters.
Hence, x = = 24 liters.
Thus 24 liters of the original 25% solution should be use, and 6 = 30-24 liters of the water should be added. ANSWER
Solved.
--------------------
There is a bunch of introductory lessons in this site, covering various types of mixture problems
- Mixture problems
- More Mixture problems
- Solving typical word problems on mixtures for solutions
- Word problems on mixtures for antifreeze solutions
- Word problems on mixtures for alloys
- Typical word problems on mixtures from the archive
Read them and become an expert in solution the mixture word problems.
Also, you have this free of charge online textbook in ALGEBRA-I in this site
- ALGEBRA-I - YOUR ONLINE TEXTBOOK.
The referred lessons are the part of this online textbook under the topic "Mixture problems".
Save the link to this online textbook together with its description
Free of charge online textbook in ALGEBRA-I
https://www.algebra.com/algebra/homework/quadratic/lessons/ALGEBRA-I-YOUR-ONLINE-TEXTBOOK.lesson
to your archive and use it when it is needed.