SOLUTION: The difference between two positive integers is 52. One integer is three times as great as the other. Find the integers.

Algebra.Com
Question 77808: The difference between two positive integers is 52. One integer is three times as great as the other. Find the integers.
Answer by fetter6(6)   (Show Source): You can put this solution on YOUR website!
Let x and y represent the two integers and let us arbitrarily choose x>y. The first statement "the difference between two positive integers is 52" can then be written as an equation: x-y=52 (since x>y).
The second statement "one integer is 3 times as great as the other" must then be written as 3y=x (again, since x>y. If 3x=y this would imply that y>x, prove this to yourself!). So the two equations we have to work with are
1. x-y=52
2. 3y=x
Since 3y=x, we can substitute 3y for x in equation (1) to get 3y-y=52 => 2y=52 => y=26. Substitute this value of y=26 into equation (2) to get 3(26)=x => 78=x.
So the two positive integers are 78 and 26. QED

RELATED QUESTIONS

Solve the problem. The difference between two positive integers is 52. One integer... (answered by checkley77)
The difference between two positive integers is 36, one integer is three times as great... (answered by stanbon)
The difference between two integers is 40. One integer is three times as great as the... (answered by rfer)
the difference between two positive integers is 48. One is three times as great as the... (answered by Alan3354)
The difference between two positive integers is 42. One integer is three times as great... (answered by checkley77)
The difference between two positive integers is 36. One integer is three times as great... (answered by Marth)
The difference between two positive integers is 36. One integer is three times as great... (answered by checkley77)
The difference between two positive integers is 34. One integer is three times as great... (answered by Fombitz)
the difference between two positive integers is 40. one integer is three times as great... (answered by DrBeeee)