Let the two equal sides have length a=b and the base have length c The perimeter = a+b+c = a+a+c = 2a+c = 99 By the triangle inequality we always have a + c > a true so the only triangular inequality we have to be concerned about is a + a > c or 2a > c and c > 0 So putting everything we have together: (1) 2a+c = 99 (2) 2a > c (3) c > 0 Solve (1) for c (1) 2a+c = 99 (4) c = 99 - 2a Substitute (4) into (2) (2) 2a > c 2a > 99 - 2a 4a > 99 (5) a > 24.75 Substitute (4) into (3) (3) c > 0 99 - 2a > 0 -2a > -99 (6) a < 49.5 Putting (5) and (6) together 24.75 < a < 49.75 So a can be any integer from 25 to 49, inclusive. There are 49 integers from 1 thru 49. We subtract the number of integers 34 or less, and there are 24 of them, so the number of triangles satisfying the given conditions is 49 - 24 or 25. That's the answer, 25. Here they all are, where "a" can be any integer from 25 through 49, inclusive. a b c 1. 25 25 49 2. 26 26 47 3. 27 27 45 4. 28 28 43 5. 29 29 41 6. 30 30 39 7. 31 31 37 8. 32 32 35 9. 33 33 33 10. 34 34 31 11. 35 35 29 12. 36 36 27 13. 37 37 25 14. 38 38 23 15. 39 39 21 16. 40 40 19 17. 41 41 17 18. 42 42 15 19. 43 43 13 20. 44 44 11 21. 45 45 9 22. 46 46 7 23. 47 47 5 24. 48 48 3 25. 49 49 1 Edwin