SOLUTION: A running track has an oval shape with straight sides (box shape) and semicircular ends to create a track. If the length of the track is 440yd and the two straight parts (box shape

Algebra.Com
Question 256213: A running track has an oval shape with straight sides (box shape) and semicircular ends to create a track. If the length of the track is 440yd and the two straight parts (box shape) are each 110yd long, what is the radius of the semicircular parts (to the nearest yard)?
Answer by ankor@dixie-net.com(22740)   (Show Source): You can put this solution on YOUR website!
A running track has an oval shape with straight sides (box shape) and semicircular ends to create a track.
If the length of the track is 440yd and the two straight parts (box shape) are each 110yd long,
what is the radius of the semicircular parts (to the nearest yard)?
:
Find the total circumference of the two half-circles
440 - 2(110) = 220 yds
:
Circumference = 2*pi*r
:
2*pi*r = 220
r =
r = 35 yds
;
:
Check: (2*pi*35) + 2(110) = 439.9 ~ 440

RELATED QUESTIONS

A running track has the shape shown in the figure [oval], with straight sides and... (answered by oscargut)
A running track has the shape with straight sides and semicircular ends. if the length of (answered by robertb)
an architect is designing a race track that will be 60 ft wide and have semicircular... (answered by Boreal)
You are in charge of constructing a fence around a running track. The fence is to be... (answered by nyc_function)
An ice rink is in the shape of a rectangle with semicircular ends. The straight sides... (answered by fractalier,Boreal)
A running track has straight parallel sides and semicircular ends. Each lane is one meter (answered by Theo)
The inside of a running track has has the form of a rectangle with length 100 yards and... (answered by Greenfinch)
Given that the radius of a semicircular ends of a track are 32 meters, how long must each (answered by ankor@dixie-net.com)
I have a picture of a outdoor running track The inside lane of the track will enclose an (answered by glabow)