.
I will answer part (i), ONLY.
(i) 1/(1*2) - 1/(2*3) + 1/(3*4) - 1/(4*5) + 1/(5*6) - ...
~~~~~~~~~~~~~~~~~~~
= -
= -
= -
= -
= -
. . . . . . . . . . . .
= -
Now take the alternate sum and get
S = (1*2) - 1/(2*3) + 1/(3*4) - 1/(4*5) + 1/(5*6) - . . . = ( - ) - ( - ) + ( - ) - ( - ) + ( - ) + . . . =
= 1 - 2/2 + 2/3 - 2/4 + 2/5 - 2/6 + . . . = (2 - 2/2 + 2/3 - 2/4 + 2/5 - 2/6 + . . . ) - 1 = 2*(1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + . . . ) - 1 =
= 2*ln(1-(-1)) - 1 = 2*ln(2) - 1 = 0.386294361 (rounded). ANSWER
Solved.
----------------
For more details, see this link
https://www.quora.com/What-is-1-1-2+1-3-1-4+1-5-1-6