SOLUTION: Q1) Let U={a,b,c,d,e,f,g,h,i,j},A={a,b,c,d,e},B={a,b,d,f,g},C={a,d,e} Findl (A⨁C)\B (A\C)∩(B\C) n(A^c∪B^c )

Algebra.Com
Question 1171361: Q1) Let U={a,b,c,d,e,f,g,h,i,j},A={a,b,c,d,e},B={a,b,d,f,g},C={a,d,e} Findl


(A⨁C)\B
(A\C)∩(B\C)
n(A^c∪B^c )

Answer by CPhill(1959)   (Show Source): You can put this solution on YOUR website!
Let $U = \{a, b, c, d, e, f, g, h, i, j\}$, $A = \{a, b, c, d, e\}$, $B = \{a, b, d, f, g\}$, and $C = \{a, d, e\}$.
1. **(A ⊕ C) \ B**
* $A \oplus C = (A \setminus C) \cup (C \setminus A)$
* $A \setminus C = \{b, c\}$
* $C \setminus A = \emptyset$
* $A \oplus C = \{b, c\} \cup \emptyset = \{b, c\}$
* $(A \oplus C) \setminus B = \{b, c\} \setminus \{a, b, d, f, g\} = \{c\}$
2. **(A \ C) ∩ (B \ C)**
* $A \setminus C = \{b, c\}$
* $B \setminus C = \{b, f, g\}$
* $(A \setminus C) \cap (B \setminus C) = \{b, c\} \cap \{b, f, g\} = \{b\}$
3. **n(Ac ∪ Bc)**
* $A^c = U \setminus A = \{f, g, h, i, j\}$
* $B^c = U \setminus B = \{c, e, h, i, j\}$
* $A^c \cup B^c = \{c, e, f, g, h, i, j\}$
* $n(A^c \cup B^c) = |A^c \cup B^c| = 7$
Therefore:
* (A ⊕ C) \ B = {c}
* (A \ C) ∩ (B \ C) = {b}
* n(Ac ∪ Bc) = 7

RELATED QUESTIONS

U = {a, b, c, d, e, f, g, h, i, j, k} A = {a, c, d, f, g, i} B = {b, c, d, f,... (answered by stanbon)
Determine the following: B ∪ C if: U= {a, b, c, d, e, f, g, h, I, (answered by jim_thompson5910)
A U B U = {a, b, c, d, e, f, g, h, I, j, k} A= {a, c, d, f, g, I} B= {b, c, d, f, g} (answered by stanbon)
U= {a,b,c,d,e,f,g} A={a,c,e,g,h} B={a,b,c,d} C={b,c,g,i} (A U B') n (C n... (answered by Alan3354,MathLover1)
a-{b-[c-(d-e)-f]-g} (answered by Mathtut)
U={a,b,c,d,e,f,g,h,i} A={a,c,g,h} B={a,b,c,d} C={b,c,g,i} (A U B') n (C n... (answered by math_tutor2020)
Let U=(a,b,c,d,e,f,g,h) A=(a,c,d) B=(b,c,d) C=(b,e,f,g,h) Find the set: (answered by Edwin McCravy)
IS MY ANSWER RIGHT? Let the Universal set be the letters a through j: U = {a, b,... (answered by Fombitz,josgarithmetic)
Let U ={a,b,c,d,e,f,g,h,i} be the universal set and A = {a,b,c,e}, B={c,e,d,f}, and C=... (answered by edjones)