SOLUTION: Help? Im kinda confused on this one: Find three consecutive integers such that the product of the first and the third is 20 more than the second.(Application of Quadratic function

Algebra.Com
Question 893361: Help? Im kinda confused on this one:
Find three consecutive integers such that the product of the first and the third is 20 more than the second.(Application of Quadratic function.)
I've tried with
xz=y+20
or
(a sub 1)(a sub 3)= (a sub 2)+ 20
but cant derive any equations for the three variables

Found 2 solutions by josgarithmetic, richwmiller:
Answer by josgarithmetic(39617)   (Show Source): You can put this solution on YOUR website!
Consecutive Integers x, x+1, x+2.

The description, .
Simplify.





Will x really be an integer?

Discriminant: . This is not a square.
The quadratic expression cannot be factored to have integer coefficients.
The numbers WILL NOT be integers.

Answer by richwmiller(17219)   (Show Source): You can put this solution on YOUR website!
x^2+2x-21=0
Solved by pluggable solver: Factoring using the AC method (Factor by Grouping)


Looking at the expression , we can see that the first coefficient is , the second coefficient is , and the last term is .



Now multiply the first coefficient by the last term to get .



Now the question is: what two whole numbers multiply to (the previous product) and add to the second coefficient ?



To find these two numbers, we need to list all of the factors of (the previous product).



Factors of :

1,3,7,21

-1,-3,-7,-21



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to .

1*(-21) = -21
3*(-7) = -21
(-1)*(21) = -21
(-3)*(7) = -21


Now let's add up each pair of factors to see if one pair adds to the middle coefficient :



First NumberSecond NumberSum
1-211+(-21)=-20
3-73+(-7)=-4
-121-1+21=20
-37-3+7=4




From the table, we can see that there are no pairs of numbers which add to . So cannot be factored.



===============================================================





Answer:



So doesn't factor at all (over the rational numbers).



So is prime.


RELATED QUESTIONS

Find three consecutive integers such that the product of the first and the third is... (answered by ewatrrr)
Find three consecutive even integers such that the product of the first and third is... (answered by Alan3354)
find three consecutive even integers such that the product of the first and the third is... (answered by checkley79)
Find three consecutive even integers such that the product of the first and the third is... (answered by Alan3354)
find three consecutive even integers such that the product of the first and the third is... (answered by richard1234)
Find three consecutive positive odd integers such that twice the square of the first one (answered by jorel555)
can you break down find three consecutive even integers such that the product of the... (answered by josh_jordan)
find three consecutive positive odd integers such that the product of the first and third (answered by CubeyThePenguin)
find the consecutive integers such that the product of the first and the third is... (answered by Alan3354)