SOLUTION: Determine the abscissae of the maxima, minima and inflection points. y = x^4 + 6x^3 - 5 The answer is supposed to be: Minimum at x point = -9/2, inflection points at x=0 and

Algebra.Com
Question 557167: Determine the abscissae of the maxima, minima and inflection points.
y = x^4 + 6x^3 - 5
The answer is supposed to be: Minimum at x point = -9/2, inflection points at x=0 and x=-3
Help me please.

Found 2 solutions by Alan3354, gbnbgb:
Answer by Alan3354(69443)   (Show Source): You can put this solution on YOUR website!
Determine the abscissae of the maxima, minima and inflection points.
y = x^4 + 6x^3 - 5
---------------
y' = 4x^3 + 18x^2 = 0
--> min @ x = -9/2
-----------------
y'' = 12x^2 + 36x = 0
--> inflections @ x = 0, -3
------------------
The answer is supposed to be: Minimum at x point = -9/2, inflection points at x=0 and x=-3

Answer by gbnbgb(1)   (Show Source): You can put this solution on YOUR website!

                とても 容易だが
http://www.algebra.com/algebra/homework/quadratic/Quadratic_Equations.faq.question.557167.html
 この 問題に 追加し 二重接線も 一本存在するので

====== 来年度以降の代数多様体受講生のために 敢えて 双対曲線を 求める発想で 解いておこう と 提案者D ======

https://www.google.co.jp/search?sourceid=navclient&aq=&oq=y%3D-5+%2B+6+x%5E3+%2B+x%5E4%2C+y%3D-86+%2B+54+(3+%2B+x)%2C+y%3D1%2F4+(-101+%2B+108+x)&hl=ja&ie=UTF-8&rlz=1T4GGNI_ja___JP491&q=y%3D-5+%2B+6+x%5E3+%2B+x%5E4%2C+y%3D-86+%2B+54+(3+%2B+x)%2C+y%3D1%2F4+(-101+%2B+108+x)&gs_l=hp....0.0.0.25198...........0.y_0OsBzLqj0


短縮URL
http://urx.nu/2G0U

http://www.wolframalpha.com/input/?i=y%3D-5+%2B+6+x%5E3+%2B+x%5E4%2C+y%3D-86+%2B+54+%283+%2B+x%29%2C+y%3D1%2F4+%28-101+%2B+108+x%29

と 「あっちゅうま に 叶う ことを 敢えて ね!」 です。

====== 来年度以降の代数多様体受講生のために 敢えて 双対曲線を 求める発想で 解いておこう と 提案者D ======

y=1/4 (-101 + 108 x) を A*x+B*y+1=0 に ヘンシン させ 獲た 双対曲線が 正鵠を射ているか 確認可!.

學生 D1 が 或る発想で 獲た と c と c^* を 描写 した(正しくは させた);

http://www.wolframalpha.com/input/?i=6+x%5E2+-+x%5E3+%2B+y+%3D%3D+0%2C+4+x%5E3+%2B+27+y+%2B+108+x+y+-+36+x%5E2+y+-+864+y%5E2+%3D%3D+0

4 x^3 + 27 y + 108 x y - 36 x^2 y - 864 y^2 == 0  は 描写し難いが

特異点に 尖閣の尖点 が ふたつ  と 二重点 が 在る筈 と 探求し始めた。


双対曲線を 求める発想は 多様に在るが 

線型写像に 飽きた 受講生が 非線型写像 (x,y)---F-->((4 x^3+18 x^2)/(-4 x^4-18 x^3+y),-(1/(-4 x^4-18 x^3+y)))

に よる cの 像 F(c)を 求め 4 x^3 + 27 y + 108 x y - 36 x^2 y - 864 y^2 == 0 

           を 獲。 その 特異点達も 求め

 もとの 易しい 曲線 c の 変曲点達における接線達 や

     二重接線を求め 愉しんだ(血が逆流体験)。

■ 彼らの 為した 行間を確実に埋め ロハで 代数多様体の講義を受講した気分に浸ってください■


           以上の 行間を埋める際

http://webcatplus.nii.ac.jp/webcatplus/details/book/8124586.html

        の 関連する 頁達を 明記 して 下さい。


RELATED QUESTIONS

Determine the abscissae of the maxima, minima and inflection points. y = x^4 + 6x^3 - 5 (answered by richard1234)
Please help me solve this problem: Use the function f(x)=sin(x)+cos(x), where... (answered by ikleyn)
For the function y = f (x) Next 3x^4 - 6x^2, determine if the graph has minima or maxima... (answered by solver91311)
What is the maxima and the minima to the nearest tenth of this equation,... (answered by venugopalramana)
Estimate the maxima and minima p(X)= -x^4+ 4x^3-2x^2-x+5 max = y = min= (answered by Fombitz)
Sketch by hand F(x) = -2x^3 +6x^2 + 18x -54, including the algebraic calculations of (answered by Fombitz)
Q4 (a) Find the maxima, minima, and inflection points of y = 3x5 - 5x3. Indicating... (answered by greenestamps)
I need help making a graph from a table of values for this function {{{ h(x) = x^4 -... (answered by Boreal,Edwin McCravy)
Estimate the real zeros, relative maxima/minima and the range of the polynomial function. (answered by richwmiller)