Solve the following equation so that it can be plotted on a graphing calculator. 4x^2 - 2xy + 3y^2 =2. I know it should be able able to use the quadratic formula but every way I try, I do not get the right answer. The question came from the TeXeS Review manual. There is no ISBN. 4x² - 2xy + 3y² = 2 Rearrange it in descending order of powers of y with 0 on the right: 3y² - 2xy + 4x² - 2 = 0 Write it this way, to see what A, B, and C are. (3)y² + (-2x)y + (4x²-2) = 0 Then for the quadratic formula, A = (3), B = (-2x), C = (4x²-2) ________ -B ± ÖB² - 4AC y = ————————————————— 2A ____________________ -(-2x) ± Ö(-2x)² - 4(3)(4x²-2) y = ————————————————————————————————— 2(3) You can put that in the TI-83 just like this without simplifying further: Y1 = (-(-2X) + Ö((-2X)² - 4(3)(4X²-2)))/(2(3)) Y2 = (-(-2X) - Ö((-2X)² - 4(3)(4X²-2)))/(2(3)) use window Xmin = -1, Xmax = 1, Xscl = 1, Ymin = -1, Ymax = 1, Yscl=1, Xres=1 You get a slanted ellipse or you can simplify it further first ____________________ -(-2x) ± Ö(-2x)² - 4(3)(4x²-2) y = ————————————————————————————————— 2(3) _______________ 2x ± Ö4x² - 12(4x²-2) y = ——————————————————————— 6 _______________ 2x ± Ö4x² - 48x² + 24 y = ——————————————————————— 6 ___________ 2x ± Ö-44x² + 24 y = ——————————————————— 6 ___________ 2x ± Ö4(-11x² + 6 y = ——————————————————— 6 ___________ 2x ± 2Ö(-11x² + 6 y = ——————————————————— 6 __________ 2[x ± Ö-11x² + 6 y = ——————————————————— 6 Cancel the 2 into the 6 _________ x ± Ö-11x² + 6 y = ————————————————— 3 ________ x ± Ö6 - 11x² y = ——————————————— 3 Then you can enter it in the TI-83 as Y1 = (X + Ö(6 - 11X²))/3 Y2 = (X - Ö(6 - 11X²))/3 Either way you get this slanted ellipse.Edwin