SOLUTION: 16x^2-6x+6=0 For the equation, state the value of the discriminant and then describe the nature of the solutions. I have tried every way possible and I can't figure this out.

Algebra.Com
Question 259766: 16x^2-6x+6=0
For the equation, state the value of the discriminant and then describe the nature of the solutions.
I have tried every way possible and I can't figure this out.
Thank you,
Patrice

Found 3 solutions by nerdybill, Alan3354, richwmiller:
Answer by nerdybill(7384)   (Show Source): You can put this solution on YOUR website!
16x^2-6x+6=0
.
The "discriminant" is the stuff under the radical in the quadratic equation:
b^2 - 4ac
.
You could apply the above directly into your equation or you could have divided by 2 first.
.
6^2 - 4(16)(6)
36 - 384
-348
.
Since you have a "negative" -- the square root of a negative number would be imaginary. Therefore, you can conclude that there are "no real solutions" for this quadratic.


Answer by Alan3354(69443)   (Show Source): You can put this solution on YOUR website!
16x^2-6x+6=0
8x^2 - 3x + 3 = 0
For the equation, state the value of the discriminant and then describe the nature of the solutions.
-----------------
The onsite solver does a good job of this.
Solved by pluggable solver: SOLVE quadratic equation (work shown, graph etc)
Quadratic equation (in our case ) has the following solutons:



For these solutions to exist, the discriminant should not be a negative number.

First, we need to compute the discriminant : .

The discriminant -87 is less than zero. That means that there are no solutions among real numbers.

If you are a student of advanced school algebra and are aware about imaginary numbers, read on.


In the field of imaginary numbers, the square root of -87 is + or - .

The solution is , or
Here's your graph:



Answer by richwmiller(17219)   (Show Source): You can put this solution on YOUR website!
To be honest, I don't believe you that you tried everything possible.
First, do you know what the discriminant is?
Second do you know what it means when the discriminant is positive, negative or zero?
Third, did you look it up?
b^2-4ac
Solved by pluggable solver: SOLVE quadratic equation with variable
Quadratic equation (in our case ) has the following solutons:



For these solutions to exist, the discriminant should not be a negative number.

First, we need to compute the discriminant : .

The discriminant -348 is less than zero. That means that there are no solutions among real numbers.

If you are a student of advanced school algebra and are aware about imaginary numbers, read on.


In the field of imaginary numbers, the square root of -348 is + or - .

The solution is

Here's your graph:

RELATED QUESTIONS

For the following equation, state the value of the discriminant and then describe the... (answered by lynnlo)
For the following equation, state the value of the discriminant and then describe the... (answered by jim_thompson5910)
For the following equation, state the value of the discriminant and then describe the... (answered by stanbon)
for the following equation, state the value of the discriminant and then describe the... (answered by jim_thompson5910,solver91311)
please help for the following equation state the value of the discriminant and then... (answered by stanbon)
for the following equation, state the value of the discriminant and then describe the... (answered by algebrahouse.com)
For the following equation, state the value of the discriminant and then describe the... (answered by rfer,mananth)
for the following equation, state the value of the discriminant and then describe the... (answered by jim_thompson5910)
State the value of the discriminant and then describe the nature of the solutions... (answered by jim_thompson5910)