.
Let f(a,b) = 2a - 3b^2 + 7 + 5a^2 - 10a. If f(k,-3) = -10, then what is k?
~~~~~~~~~~~~~~~~~~~~~~~~
Combine like terms
f(a,b) = 5a^2 -3b^2 - 8a + 7.
Substitute a= k, b= -3
f(k,-3) = 5k^2 - 3*(-3)^2 - 8k + 7.
Simplify
f(k,-3) = 5k^2 -27 - 8k + 7 = 5k^2 - 8k - 20.
Your equation to find "k" is
5k^2 - 8k - 20 = -10.
Simplify
5k^2 - 8k - 10 = 0.
The discriminant is d = (-8)^2 - 4*5*(-10) = 64 + 200 = 264.
Find "k" using the quadratic formula
= = =
ANSWER. There are two real values for "k" : and .
Solved.