.
Answer. The maximum possible area is = 3906.25 sq. ft.
Solution
A rectangle with a given perimeter which has the maximal area is a square.
-----------
For detailed proof and explanation see the lesson in the list below marked (*).
On finding the maximum/minimum of a quadratic function and relevant issues see my lessons
- HOW TO complete the square to find the minimum/maximum of a quadratic function
- Briefly on finding the minimum/maximum of a quadratic function
- HOW TO complete the square to find the vertex of a parabola
- Briefly on finding the vertex of a parabola
- A rectangle with a given perimeter which has the maximal area is a square (*)
- A farmer planning to fence a rectangular garden to enclose the maximal area
- A farmer planning to fence a rectangular area along the river to enclose the maximal area
- A rancher planning to fence two adjacent rectangular corrals to enclose the maximal area
- Using quadratic functions to solve problems on maximizing revenue/profit
- OVERVIEW of lessons on finding the maximum/minimum of a quadratic function
Also, you have this free of charge online textbook in ALGEBRA-I in this site
- ALGEBRA-I - YOUR ONLINE TEXTBOOK.
The referred lessons are the part of this textbook under the topic "Finding minimum/maximum of quadratic functions".
Save the link to this online textbook together with its description
Free of charge online textbook in ALGEBRA-I
https://www.algebra.com/algebra/homework/quadratic/lessons/ALGEBRA-I-YOUR-ONLINE-TEXTBOOK.lesson
to your archive and use it when it is needed.