SOLUTION: Find k so that the roots of (2k-1)x^2 + (k-1)x - 16 = 0 are numerically equal but opposite in sign.

Algebra.Com
Question 1094972: Find k so that the roots of (2k-1)x^2 + (k-1)x - 16 = 0 are numerically equal but opposite in sign.
Answer by ikleyn(52792)   (Show Source): You can put this solution on YOUR website!
.
If "the roots are numerically equal but opposite in sign", it means that the sum of roots is ZERO.


From the other side, according to Vieta's theorem, the sum of the roots of the quadratic polynomial is equal to its coefficient at "x", 
taken with the opposite sign and divided by the leading coefficient.


It means that the coefficient at "x" must be equal to ZERO.


Hence, k = 1.


Answer.  The necessary and sufficient condition is k = 1.

Solved.



RELATED QUESTIONS

Dear Sir/Madam, Kindly help me in finding the value of k so that the equation... (answered by ankor@dixie-net.com)
Find the value of k so that the equation 3x²-(5+k)x-17=0 will have roots numerically... (answered by robertb)
For what values of k will the equation {{{ x^2 -(k-2)x-12=0}}} have roots that are equal... (answered by ikleyn,Theo,MathLover1)
I really need some help for this problems because I have been confuse of this problems... (answered by Edwin McCravy)
I really need some help for this problems because I have been confuse of this problems... (answered by Edwin McCravy)
What is the value of k so that the equation 2x2 + 4x - 17 = kx has roots numerically... (answered by josgarithmetic)
Find the value(s) of k such that the quadratic (k+1)x^2+2kx+2k=3(kx-1) has roots whose... (answered by thesvw)
Find the values of k so that the equation {{{(k-2)x^2+4x-2k+1=0}}} has two distinct real... (answered by josgarithmetic)
Find k if the roots of the equation (k+3)x^2 - 2(k+1)x - (k+1) = 0 are equal. If k is not (answered by Boreal,MathTherapy)