SOLUTION: Using the SPSS Output given below, interpret the data in the table for the within-subjects effect, the between-subjects effect, and the interaction. Make sure to discuss t

Algebra ->  Proportions -> SOLUTION: Using the SPSS Output given below, interpret the data in the table for the within-subjects effect, the between-subjects effect, and the interaction. Make sure to discuss t      Log On


   



Question 725905: Using the SPSS Output given below, interpret the data in the table for the within-subjects effect, the between-subjects effect, and the interaction.
Make sure to discuss the findings of the analysis in terms of what they actually mean in the context of the study (your final project for this lab).
Within-Subjects Factors
Measure:MEASURE_1
Anxiety_Level

Dependent Variable
1

RCMAS_Pretreatment
2

RCMAS_Posttreatment

Between-Subjects Factors




Value Label

N
Treatment_Condition

1

CBT

33
2

PSY

33
3

SUPP

33


Descriptive Statistics


Treatment Condition

Mean

Std. Deviation

N
RCMAS_Pretreatment

CBT

20.3333

3.70529

33
PSY

19.9091

3.22455

33
SUPP

20.4242

4.30864

33
Total

20.2222

3.74045

99
RCMAS_Posttreatment

CBT

7.3939

4.34410

33
PSY

11.7879

3.79768

33
SUPP

16.0909

3.97149

33
Total

11.7576

5.36255

99

Multivariate Testsb
Effect

Value

F

Hypothesis df

Error df

Sig.
Anxiety_Level

Pillai's Trace

.809

407.585a

1.000

96.000

.000
Wilks' Lambda

.191

407.585a

1.000

96.000

.000
Hotelling's Trace

4.246

407.585a

1.000

96.000

.000
Roy's Largest Root

4.246

407.585a

1.000

96.000

.000
Anxiety_Level * Treatment_Condition

Pillai's Trace

.424

35.278a

2.000

96.000

.000
Wilks' Lambda

.576

35.278a

2.000

96.000

.000
Hotelling's Trace

.735

35.278a

2.000

96.000

.000
Roy's Largest Root

.735

35.278a

2.000

96.000

.000
a. Exact statistic
b. Design: Intercept + Treatment_Condition
Within Subjects Design: Anxiety_Level

Mauchly's Test of Sphericityb
Measure:MEASURE_1
Within Subjects Effect

Mauchly's W

Approx. Chi-Square

df

Sig.

Epsilona
Greenhouse-Geisser

Huynh-Feldt

Lower-bound
Anxiety_Level

1.000

.000

0

.

1.000

1.000

1.000
Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.
a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.
b. Design: Intercept + Treatment_Condition
Within Subjects Design: Anxiety_Level

Tests of Within-Subjects Effects
Measure:MEASURE_1
Source

Type III Sum of Squares

df

Mean Square

F

Sig.
Anxiety_Level

Sphericity Assumed

3546.687

1

3546.687

407.585

.000
Greenhouse-Geisser

3546.687

1.000

3546.687

407.585

.000
Huynh-Feldt

3546.687

1.000

3546.687

407.585

.000
Lower-bound

3546.687

1.000

3546.687

407.585

.000
Anxiety_Level * Treatment_Condition

Sphericity Assumed

613.949

2

306.975

35.278

.000
Greenhouse-Geisser

613.949

2.000

306.975

35.278

.000
Huynh-Feldt

613.949

2.000

306.975

35.278

.000
Lower-bound

613.949

2.000

306.975

35.278

.000
Error(Anxiety_Level)

Sphericity Assumed

835.364

96

8.702




Greenhouse-Geisser

835.364

96.000

8.702




Huynh-Feldt

835.364

96.000

8.702




Lower-bound

835.364

96.000

8.702







Tests of Within-Subjects Contrasts
Measure:MEASURE_1
Source

Anxiety_Level

Type III Sum of Squares

df

Mean Square

F

Sig.
Anxiety_Level

Linear

3546.687

1

3546.687

407.585

.000
Anxiety_Level * Treatment_Condition

Linear

613.949

2

306.975

35.278

.000
Error(Anxiety_Level)

Linear

835.364

96

8.702





Tests of Between-Subjects Effects
Measure:MEASURE_1
Transformed Variable:Average
Source

Type III Sum of Squares

df

Mean Square

F

Sig.
Intercept

50624.020

1

50624.020

2313.273

.000
Treatment_Condition

639.101

2

319.551

14.602

.000
Error

2100.879

96

21.884





Answer by tommyt3rd(5050) About Me  (Show Source):
You can put this solution on YOUR website!

Please repost with a clear and complete question :)