SOLUTION: If (x+2)^2 = 49 and (y+5)^2=16, then which cannot be the value of x+y? a. -18 b. -10 c. -6 d. -4 e. 4

Algebra ->  Test -> SOLUTION: If (x+2)^2 = 49 and (y+5)^2=16, then which cannot be the value of x+y? a. -18 b. -10 c. -6 d. -4 e. 4      Log On


   



Question 892340: If (x+2)^2 = 49 and (y+5)^2=16, then which cannot be the value of x+y?
a. -18
b. -10
c. -6
d. -4
e. 4

Answer by Fombitz(32388) About Me  (Show Source):
You can put this solution on YOUR website!
%28x%2B2%29%5E2+=+49+
x%2B2+=+0+%2B-+7
x=-2+%2B-+7
x=5 and x=-9
and
%28y%2B5%29%5E2+=+16
y%2B5=0+%2B-+4
y=-5+%2B-+4
y=-1 and y=-9
So then,
x%2By=5-1=4
x%2By=5-9=-4
x%2By=-9-1=-10
x%2By=-9-9=-18