.
Given: sin(x) - cos(x) = 1/(5^1/2) find the value of tan(x) + cot(x) + cos(2x)
~~~~~~~~~~~~~~~~~
The given equality sin(x) - cos(x) = implies after squaring
sin^2(x) - 2sin(x)*cos(x) + cos^2(x) =
1 - sin(2x) =
1 - = sin(2x)
sin(2x) = . (1)
The value of tan(x) + cot(x) + cos(2x) is
+ + cos(2x) =
= + cos(2x) =
= + cos(2x).
Substitute here sin(2x) = and cos(2x) = = = , based on (1). You will get
tan(x) + cot(x) + cos(2x) = + = + = + =
= = = = 3.1. ANSWER
ANSWER. If sin(x) - cos(x) = then tan(x) + cot(x) + cos(2x) = = 3.1.
Solved.