4cos(2θ)sin(4θ) We notice that this has a product of a sine and a cosine and we remember that such a product appears in the formulas: sin(A+B) = sin(A)cos(B) + cos(A)sin(B) sin(A-B) = sin(A)cos(B) - cos(A)sin(B) So we substitute A=4θ and B=2θ in those sin(4θ+2θ) = sin(4θ)cos(2θ) + cos(4θ)sin(2θ) sin(4θ-2θ) = sin(4θ)cos(2θ) - cos(4θ)sin(2θ) or sin(6θ) = sin(4θ)cos(2θ) + cos(4θ)sin(2θ) sin(2θ) = sin(4θ)cos(2θ) - cos(4θ)sin(2θ) If we add those equations together, equal to equals, the last terms cancel and we get sin(6θ) + sin(2θ) = 2sin(4θ)cos(2θ) So our problem 4cos(2θ)sin(4θ) = 2[2sin(4θ)cos(2θ)] = 2[sin(6θ) + sin(2θ)] or 2sin(6θ) + 2sin(2θ) Edwin