x⁴ - 11x³ + 18x² ≥ 0 Factor out x² x²(x² - 11x + 18) ≥ 0 Factor the trinomial in the parentheses: x²(x - 2)(x - 9) ≥ 0 The critical numbers are 0, 2 and 9. They are also solution because when substituted for x the cause the left side to equal 0. So we put those on a number line with a darkened circle: ----------☻-----☻--------------------☻--------- -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 We choose easiest test values in between those darkened circles. for the interval x < 0 we choose -1 and substitute it in the inequality: x²(x - 2)(x - 9) ≥ 0 (-1)²(-1 - 2)(-1 - 9) ≥ 0 1(-3)(-10) ≥ 0 30 ≥ 0 That's true so we shade the interval x < 0 <=========☻-----☻--------------------☻--------- -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 for the interval 0 < x < 2 we choose test value 1 and substitute it in the inequality: x²(x - 2)(x - 9) ≥ 0 (1)²(1 - 2)(1 - 9) ≥ 0 1(-1)(-8) ≥ 0 30 ≥ 0 That's true so we shade the interval x < 0 <=========☻=====☻--------------------☻--------- -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 We might as well delete the darkened circle at 0 since now we know it is shaded anyway: <===============☻--------------------☻--------- -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 for the interval 2 < x < 9 we choose test value 3 and substitute it in the inequality: x²(x - 2)(x - 9) ≥ 0 (3)²(3 - 2)(3 - 9) ≥ 0 9(1)(-6) ≥ 0 -54 ≥ 0 That's false so we do not shade the interval 2 < x < 9. So we still have: <===============☻--------------------☻--------- -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 for the interval x > 9 we choose 10 and substitute it in the inequality: x²(x - 2)(x - 9) ≥ 0 (10)²(10 - 2)(10 - 9) ≥ 0 100(8)(1) ≥ 0 100 ≥ 0 That's true so we shade the interval x > 9. <===============☻--------------------☻========> -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 That's the number line graph. The interval notation for that is:Edwin