SOLUTION: prove the following
1.tanAsinA+cosA=secA
2.sinA-sinAcos^2A=sin3A
3.sinAcscA-cos^A=sin^2A
4.sinA+sinAcot^2A=cscA
5.tanA+cotA=secAcscA
6.1/1-sinA+1/1+sinA=2sec^2A
Algebra.Com
Question 1024897: prove the following
1.tanAsinA+cosA=secA
2.sinA-sinAcos^2A=sin3A
3.sinAcscA-cos^A=sin^2A
4.sinA+sinAcot^2A=cscA
5.tanA+cotA=secAcscA
6.1/1-sinA+1/1+sinA=2sec^2A
Answer by Alan3354(69443) (Show Source): You can put this solution on YOUR website!
prove the following
1.tanAsinA+cosA=secA
---
sin^2/cos + cos = sec
Multiply thru by cos
sin^2 + cos^2 = 1 QED
----------
2.sinA-sinAcos^2A=sin3A
It it's sin^3 on the right, divide thru by sine.
-------------
3.sinAcscA-cos^A=sin^2A
1 - cos^2 = sin^2 QED
-------
4.sinA+sinAcot^2A=cscA
sin + cos^2/sin = csc
Multiply thru by sine
sin^2 + cos^2 = 1 QED
--------------
5.tanA+cotA=secAcscA
sin/cos + cos/sin = 1/(sin*cos)
Multiply thru by sin*cos
----------------
6.1/1-sinA+1/1+sinA=2sec^2A
((1+sin) + (1-sin))/(1-sin^2) = 2sec^2
2/cos^2 = 2/cos^2 QED
================================
I'm still looking for an example where working 1 side only makes a difference.
RELATED QUESTIONS
prove the following identities (step by step process simplest form and detailed)... (answered by Alan3354)
prove the following identities (step by step process simplest form and detailed)... (answered by Alan3354)
Prove that :
1. (cscA-1)/(cscA+1) = (1-sinA)/(1+sinA)
2. (secA/cscA)+(sinA/cosA) =... (answered by Edwin McCravy)
(1) The expression (1+cosA)/(1-cosA)- (secA-1)/(1+secA)-4cot^2A, wherever definrd... (answered by stanbon)
I simply dont understand how to switch from the identites and solve these sort of... (answered by stanbon)
Prove the following:
a) CosA = CotA
SecA
b) SinA = CscA (1+CosA)
(answered by Alan3354)
Prove the following:
a) CosA/SecA = CotA
b) SinA/1-CosA = CscA (1+CosA)
(answered by Alan3354)
1. Prove that (1-cosA) (1-secA) = tan A sinA
2. Prove that secA (1-sinA) (secA+tanA)... (answered by mananth)
prove that :
1. 1+sin A/cos A = sec A + tan A
2. 1-(cos^2 A/1+sinA)= sin A
3.... (answered by Alan3354)