SOLUTION: how do you solve
log(x+2)-log(x-1)=logx-log(x=3)
Algebra.Com
Question 855105: how do you solve
log(x+2)-log(x-1)=logx-log(x=3)
Answer by Theo(13342) (Show Source): You can put this solution on YOUR website!
this is problem number 855105.
the properties of logs that you will use are:
log(a) - log(b) = log(a/b)
if log(a) = log(b), then a = b.
before i can solve this for you, i need you to check your original equation to make sure you entered it correctly.
you show (x=3)
did you mean (x+3) or did you mean (x-3) or did you mean something else?
i did some preliminary analysis and i don't see a solution to this problem, so it's important to make sure you have shown the problem correctly.
check it again and get back to me with a revised original equation.
i'll then look at it again and get back to you.
your original question is:
how do you solve
log(x+2)-log(x-1)=logx-log(x=3)
RELATED QUESTIONS
How do you solve... (answered by rothauserc)
Log(x+2) - log(x-1) = logx -... (answered by ewatrrr)
Solve log(x-1)- log6 = log(x-2)-... (answered by HyperBrain)
logx-log(x-1)=2 (answered by user_dude2008)
How do you solve:... (answered by jsmallt9)
How do you find... (answered by radh)
solve:
logx + log(x-3) = 1
(answered by jsmallt9)
solve:
logx + log(x+3)=... (answered by nerdybill)
log(x+3)=1-logx (answered by josmiceli)