ln(x+1) = ln(3x+1) - ln x ln(x+1) + ln(x) = ln(3x+1) ln[(x+1)x] = ln(3x+1) ln(x²+x) = ln(3x+1) Use the rule: if ln(A) = ln(B) then A = B x²+x = 3x+1 x² - 2x - 1 = 0 Get 0 on the right by subtracting 3x and 1 from both sides: x² - 2x - 1 = 0 Use the quadratic formula: ______ -b ± Öb²-4ac x = ————————————— 2a where a = 1; b = -2; c = -1 ______________ -(-2) ± Ö(-2)²-4(1)(-1) x = ———————————————————————— 2(1) ___ 2 ± Ö4+4 x = ——————————— 2 _ 2 ± Ö8 x = ———————— 2 ___ 2 ± Ö4·2 x = ——————————— 2 _ 2 ± 2Ö2 x = —————————— 2 _ 2 2Ö2 x = ——— ± ————— 2 2 _ x = 1 ± Ö2 _ Using the +, x = 1 + Ö2, which is one answer and equals about 2.141213562 _ Using the -, x = 1 - Ö2, which is the other answer and equals about -.4142135624. However since the original problem contains ln(x), and since logarithms can only be taken of positive numbers, the only solution is: _ x = 1 + Ö2 Edwin