Question 1002254: What is the exact solution of the equation
log4 = 1+log(x+1) Found 3 solutions by dkppathak, Alan3354, MathTherapy:Answer by dkppathak(439) (Show Source): You can put this solution on YOUR website! What is the exact solution of the equation
log4 = 1+log(x+1)
solution
we know log10=1 substitute 1= log10
log4 = 1+log(x+1)
log4= log10 +log(x+1) by using law log m +logn =log (mn)
log 4= log[10(x+1)] by anti log
4=10(x+1)
4/10 = x+1
0.4 =x+1
x=0.4-1=-0.6 Answer by Alan3354(69443) (Show Source): You can put this solution on YOUR website! What is the exact solution of the equation
log4 = 1+log(x+1)
-----
log4 - 1 = log(x+1)
log(4) - log(10) = log(x+1)
log(4/10) = log(x+1)
x+1 = 0.4
x = -0.6 Answer by MathTherapy(10557) (Show Source): You can put this solution on YOUR website! What is the exact solution of the equation
log4 = 1+log(x+1)
10(x + 1) = 4 ------- Cross-multiplying
10x + 10 = 4
10x = - 6
x = , or