SOLUTION: Goldbach's Conjecture states: Every number greater than 2 can be written as the sum of two primes. Which sum for 30 supports this conjecture?
A. 15 + 15
B. 12 + 18
C. 2 +
Algebra.Com
Question 413401: Goldbach's Conjecture states: Every number greater than 2 can be written as the sum of two primes. Which sum for 30 supports this conjecture?
A. 15 + 15
B. 12 + 18
C. 2 + 28
D. 17 + 13
Answer by phxladyphx@yahoo.com(18) (Show Source): You can put this solution on YOUR website!
Well first you have to know what a prime number is. A prime number (or a prime) is a natural number that has exactly two distinct natural number divisors: 1 and itself.
Ex. 1, 3, 5, 7, 11, 13, 17
Therefore if you had the examples below:
A. 15 + 15
B. 12 + 18
C. 2 + 28
D. 17 + 13
the only one adding two prime numbers is D 17+13 = 30
RELATED QUESTIONS
Goldbach's conjecture states: every even number greater than 2 can be written as the sum... (answered by richwmiller)
One of the most famous unsolved problems in mathematics is a conjecture
made by... (answered by solver91311)
Christian Goldbach stated that every odd number greater than 7 can be written as the sum... (answered by Edwin McCravy)
can you find an integer greater than 20 for which the conjecture fails.(every integer... (answered by Edwin McCravy)
I really do not understand proofs.
I was given this question:
Goldbach's conjecture... (answered by solver91311)
Let n be a positive integer greater than 1. We call n prime if the only positive integers (answered by jim_thompson5910)
{2,3,5,7,11,13,17,19,23,29,31,37
Show that Goldbach's Conjecture is true for the even (answered by jim_thompson5910)
1. Cedric raises chickens and rabbits. When he counts the heads, he gets 82. When he... (answered by ikleyn)
Christian Golbach stated that every odd number greater than 7 can be written as the sum... (answered by richard1234)